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Abstract

We experimentally implement a dynamic public-good problem, where the public
good in question is the dynamically evolving information about agents’ common state
of the world. Subjects’ behavior is consistent with free-riding because of strategic
concerns. We also find that subjects adopt more complex behaviors than predicted by
the welfare-optimal equilibrium, such as non-cut-off behavior, lonely pioneers and
frequent switches of action.
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1 Introduction
Economists have long been concerned with social dilemmas related to the production of
public goods. There exists a vast experimental literature on gameswhich examines thewill-
ingness to contribute to public goods (for surveys, see Ledyard 1995 and Chaudhuri 2011;
and for a meta-analysis, see Zelmer 2003). In these environments, payoff-maximizers’
dominant strategy is to contribute none of their endowment to a group activity. The typi-
cal environment is such that it creates a social dilemma, leading to zero contribution to the
group activity, while, in the efficient outcome, each player contributes his entire endow-
ment. For many decades, economists have attempted to experimentally test this trade-off
and to analyze factors that facilitate increased cooperation in such social-dilemma situa-
tions in the lab (e.g., Fehr and Gächter 2000; Ambrus and Greiner 2012; and Fenig, Gal-
lipoli, and Halevy 2018).1

Situations in which the public good is dynamically evolving, however, have received
scant attention from experimental economists so far. This is the case, for instance, when
the public good in question is information. By contrast, purely informational social dilem-
mas are the object of the so-called strategic multi-armed bandit problems, which have re-
ceived a lot of attention in the recent theoretical literature. In multi-armed bandit prob-
lems, agents repeatedly choose among different option (or bandit arms) of initially un-
known quality. A strategic bandit problem is one in which several agents solve a bandit
problem each. In the simplest case, the underlying payoff parameters are the same for all
the agents, so that the information produced by one agent is useful to the other agents as
well. In particular, the other agents’ actions do not impact a given agent’s payoffs directly;
the only strategic link across players is via the information they produce, which is use-
ful to the other players’ decision problems. By abstracting from payoff externalities, these
settings reduce players’ scope for intertemporal incentives, as punishments and rewards
can only be informational in nature. In this paper, we offer one of the first experimental
investigations of the provision of a dynamically evolving public good, and, to the best of
our knowledge, the first to implement an experimental investigation of a dynamic social
dilemma where externalities are purely informational.

The trade-offs involved in the production of public information are important to un-
derstand. Indeed, innovation and social learning are often the work of pioneers, who, by
bearing the costs of experimenting with a new approach, create informational spill-overs
for others. Whether we consider R&D, resource exploration, or the testing of a new drug,
the information produced by a relatively small set of agents benefits a much larger group of
agents. R&D is universally recognized as an important factor of economic growth (Romer
1990; Grossman andHelpman 1993). An economy’s productivity level depends on innova-
tion, which is driven by knowledge emerging from cumulative R&D experience as well as
an economy’s overall knowledge stock (Griliches 1988; Coe andHelpman 1995). Situations
in which the informational benefits of experimentation are shared abound: for example,
the decision of where to fish when others can see one’s boat and haul,2 consumers search-

1For early experimental studies, see Kim and Walker (1984), Isaac, Walker, and Thomas (1984), Isaac,
McCue, and Plott (1985), Isaac and Walker (1988a,b), and Andreoni (1988). For early studies embedded in
the sociology literature, see Marwell and Ames (1979, 1980, 1981).

2We are indebted to an anonymous referee for this example.
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ing for the right car or cell-phone to buy, farmers deciding whether to grow a traditional
or a gene-modified crop, graduate students selecting their field of research, etc.

In the multi-armed bandit models, which have become canonical to study information
producers’ dynamic trade-offs, a decision maker, at each point in time, either optimally
exploits the information he already has, or he decides to invest in exploration in order to
make better future decisions. Until fairly recently, the literature focussed on the trade-off
of an individual decision maker acting in isolation. Bolton and Harris (1999) and Keller,
Rady, and Cripps (2005) (subsequently: KRC) have extended the individual choice prob-
lem to amulti-player continuous-time framework. The simpler exponential model of KRC
especially has since been used to analyze a wide array of applications, such as, for instance,
R&D races.3

Thus, the object of this paper is to experimentally examine behavior in a novel social
dilemma over the exploration of information with common value. In order to do so, we
base ourselves on KRC’s exponential model. We chose this particular model for two rea-
sons. Firstly, its setup is simpler than that of the other strategic-experimentation papers,
and, secondly, as Hörner, Klein, and Rady (2021) (subsequently: HKR) have shown, the
welfare-optimal equilibrium4 has a particularly simple structure in this model. Indeed,
while it is non-Markovian, it is strongly symmetric and players play a cut-off strategy5 (on
the path of play), applying the same cut-off as a single agent. Given the simple structure
of the best equilibrium, it can reasonably be expected to be focal among the continuum of
equilibria that exist in the model. Moreover, it gives us a very clean empirical test: if they
(want to) play the equilibrium, subjects should behave in the same way as when they solve
the single-agent problem.

To make the problem tractable, the strategic-experimentation literature is by and large
focussing on the choice between a safe option, yielding a known payoff, and a risky option,
which yields payoffs following a stochastic process. The time-invariant quality of this risky
option can be good or bad. If it is good (bad), it dominates (is dominated by) the safe
option. Whether the risky option is good or bad is initially unknown and can only be
found out by trying it out over time. Trying it out is costly, however, as it means forgoing
the safe payoff. As the quality of the risky option is assumed to be the same across players,
and players can observe each other’s actions and payoffs, there is a positive informational
externality associated with a player’s use of the risky option. This gives rise to a dynamic
public-good problem in the form of dynamically evolving information about the agents’
common state of the world.

3See e.g. Besanko and Wu (2013), Akcigit and Liu (2016) or Das and Klein (2020). Besanko, Tong, and
Wu (2018) uses the exponential bandits framework to analyze optimal subsidies for R&D.

4We are committing a slight abuse of terminology here by referring to the “welfare-optimal,” “average-
payoff maximizing” or “best” equilibrium, which we shall maintain throughout this paper. HKR in fact
analyze a setting in continuous time in which actions are frozen for small intervals of time of length 𝛥 > 0.
They show that, for small enough 𝛥, there exists a perfect Bayesian equilibrium (PBE), which happens to be
strongly symmetric, with payoffs that, as 𝛥 → 0, converge to the payoff from all players playing risky above
the single-agent threshold and safe below it, and that it is not possible to achieve higher limit average PBE
payoffs. Our experimental implementation is, of course, strictly speaking, in discrete time, with information
and action choices being updated every second.

5A cut-off strategy is defined by a unique threshold belief above which it prescribes risky play, while
prescribing safe play below it.
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As hinted at above, our analysis relies on comparing the behavior of our experimental
subjects in groups where the quality of the risky option was known to be the same for all
partners (which we call the strategic treatment) to that of groups where its quality was iid
across members, the control treatment.6 When the quality of the risky option is known to
be the same across players, rational agents will take into account the result of their partners’
experimentationwhenupdating their beliefs. As they can learn fromwhat others are doing,
they have an incentive to induce others to behave in certain ways so they may learn from
it. There is thus some strategic interaction across players, even though a player’s payoffs
depend only on his own action and the common state of the world, i.e., there are no payoff
externalities.

In a first step, we show that the informational externality impacts subjects’ behavior.
Average experimentation intensities are lower in the strategic treatment, and, in particular,
in the belief region for which theory predicts free-riding to be an issue, subjects experi-
ment significantly less in the strategic treatment, suggesting they are free-riding because
of strategic concerns.7 Moreover, subjects’ payoffs are higher in the strategic treatment,
suggesting that they are taking advantage of the information produced by their partners.
Further, subjects are adoptingmore sophisticated behaviors in the strategic treatment than
in the control treatment. Players switchmuchmore between safe and risky, and use cut-off
strategies much less frequently, in the strategic treatment. Additionally, there is a larger
proportion of time during which exactly one player is playing risky in the strategic treat-
ment.8 If subjects were playing, or aiming to play, the best PBE, we should observe none
of these differences. In this case, the only difference between the two treatments should
consist in the increased speed of learning in the strategic treatment, with subjects’ behavior
otherwise the same across treatments.

We interpret our findings as showing that, while understanding the informational ex-
ternality (since they achieved higher payoffs in the strategic treatment), subjects were not
behaving, or aiming to behave, as in the best PBE. Rather, the behaviors we document are
consistent with the qualitative predictions of any of KRC’s (infinitely many) Markov per-
fect equilibria (MPE), which feature players’ taking turns and alternating in the roles of
free-riders and pioneers for some intermediate range of beliefs. Further, the differences
between the two treatments tend to be more pronounced for two-player groups than for
groups of size three.

Our game is of course very complicated, so that we cannot reasonably expect subjects to
be able to compute equilibrium strategies. Yet, subjects’ experimentation efforts are clearly
decreasing with the incremental arrival of bad news in the form of unsuccessful previous

6The fact that players’ payoffs are realizations of compound stochastic processes in our setting consid-
erably blows up their variances, so that the different solution concepts cannot be directly identified from
subjects’ realized payoffs. As we shall explain in detail below, we therefore conduct inference by comparing
payoffs across treatments for given realizations of the stochastic processes and mostly by comparing behavior
across treatments.

7Free-riding in our setting refers to a subject opportunistically using the safe optionwhile efficiencywould
require the use of the risky option. Players have no incentives to do so at very optimistic beliefs, where risky
is a dominant action. Subsequently, we shall therefore use the phrase only with respect to those belief regions
where there is a strategic rationale for players to deviate from efficient behavior by playing safe.

8We refer to such players as pioneers.
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experimentation. This would suggest that, even though subjects could of course not be
expected continually to update their beliefs using Bayes’ rule precisely at lightning speed,
they were nonetheless reacting to the dynamically evolving incentives. Furthermore, we
are documenting behavior that is very different from the simple structure of the best PBE,
and arguably more in line with the sophisticated coordination required by MPE play.

The rest of the paper is organized as follows: Section 2 reviews some additional re-
lated literature; Section 3 explains the KRC model in more detail; Section 4 sets out our
experimental implementation; Section 5 presents our main findings; Section 6 provides
additional results and robustness checks; and Section 7 concludes. Appendix A in the
Supplementary Material (Hoelzemann and Klein 2021) breaks down the analysis to the
individual games subjects played. Appendix B exhibits and explains the interface our ex-
perimental subjects were using and Appendix C reproduces the instructions the subjects
received.

2 Literature Review
The bandit problem as a stylized formalization of the trade-off between exploration and
exploitation goes back to Thompson (1933) and Robbins (1952). It was subsequently ana-
lyzed, amongst others, by Bellman (1956) and Bradt, Johnson, and Karlin (1956). Its first
application to economics was in Rothschild (1974), who analyzed the price-setting prob-
lemof a firm facing an unknowndemand function. Gittins and Jones (1974) showed that, if
arms are stochastically independent of each other and the state of only one arm can evolve
at any one time, an optimal policy in the multi-armed bandit problem is given by the so-
called “Gittins Index” policy. For this policy, one can consider the problem of stopping on
each arm in isolation from the other arms. The value of this stopping problem is the so-
called Gittins Index for this arm. Now, an optimal policy consists of, at each point in time,
using the arm with the highest Gittins Index. Presman (1990) calculated the Gittins Index
for the case in which the underlying stochastic process is a Poisson process. Bergemann
and Välimäki (2008) give a survey of this literature.

Bolton and Harris (1999, 2000) were the first to consider the multi-player version of
the two-armed bandit problem. While they assumed that the underlying stochastic pro-
cess was a Brownian motion, KRC analyzed the corresponding problem with exponential
processes. This model proved to be more tractable and is underlying our theoretical hy-
potheses. While the previous papers focussed on MPE, HKR extended the equilibrium
concept beyond Markov perfect equilibrium.9

We are aware of only one other experimental investigation of a strategic-experimen-
tation problem with bandits, by Boyce, Bruner, and McKee (2016). Their setting is specif-

9Many variants of the multi-player bandit problem have been analyzed since. In Keller and Rady (2010),
a bad risky arm also sometimes yields a payoff. In Klein and Rady (2011), the quality of the risky arm
is negatively correlated across players. Klein (2013) introduces a second risky arm, with a quality that is
negatively correlated with that of the first. In Keller and Rady (2015), the lump-sum payoffs are costs to
be minimized. Rosenberg, Solan, and Vieille (2007) and Murto and Välimäki (2011) analyze the case of
privately observed payoffs, while Bonatti andHörner (2011) investigate the case of privately observed actions.
Bergemann and Välimäki (1996, 2000) consider strategic experimentation in buyer-seller settings. Hörner
and Skrzypacz (2017) give a survey of this literature.
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ically designed to test for strategic free-riding in a two-player, two-period context. Coor-
dination issues are assumed away in that one player was known to have lower opportunity
costs for playing risky than the other, so that it was clear which player ought to play the
role of pioneer (and that of free-rider respectively) in the first period. Moreover, in Boyce,
Bruner, and McKee (2016)’s experiment, subjects faced ambiguity concerning the type of
the risky arm. Indeed, they were not told a prior probability of the risky arm’s type, which
allows for an explanation of subjects’ behavior that relies on their priors and ambiguity at-
titudes. Our investigation, by contrast, is focussed on how players resolve the coordination
problems arising from strategic interaction. Indeed, our subjects all face the same decision
problem and are given a Bayesian prior at the outset. As they interact many times with a
stochastic and unknown deadline, their action spaces are very rich.

The only other papers we are aware of that conduct experimental tests of bandit prob-
lems consider exclusively various single-agent problems without strategic interdependen-
cies among experimental subjects. Hudja and Woods (2020) experimentally investigates
the single-agent version of KRC’s exponential-bandit setting, finding that subjects tended
to explore less than predicted. Banks, Olson, and Porter (1997) experimentally implement
bandits with simple win-lose (Bernoulli) payout distributions, and test whether subjects
value information gained through experimentation. In their experimental design, the ex-
pected payoff of one arm is known, while the other is unknown. Experimentation is ob-
served more in one treatment where initial selection of the unknown arm is optimal com-
pared to the treatment where experimentation is suboptimal. These results suggest that
subjects’ behavior is consistent with the normative predictions and that subjects value the
information gained through costly experimentation.

A couple of papers by Meyer and Shi (1995) and Gans, Knox, and Croson (2007) em-
ploy a different experimental approach, aiming at identifying choice patterns that are con-
sistent with a list of simple decision rules. Meyer and Shi (1995) test decision-making un-
der ambiguity and use experimental data to generate hypotheses about subjects’ possible
heuristics. While observed choice behavior indicates Bayesian updating of priors, their ex-
perimental subjects also exhibit a strong bias toward myopic choices. Among all decision
rules considered, the simple stick-with-a-winner strategy fits the data best. Gans, Knox,
and Croson (2007) consider a list of simple discrete-choice models in a two-armed bandit
set-up. The optimal choice model could not explain their experimental data well. To pre-
dict choice behavior, simpler heuristic models are proposed. Indeed, backward-looking
strategies which predict switching arms after a fixed number of consecutive failures best
explain the observed choices.

Anderson (2001, 2012) uses arms with payout distributions, e.g., simulated dice rolls
and normally distributed rewards. He finds that subjects experiment less than would be
optimal, and are willing to pay more for getting perfect information than theory would
predict. In this set-up ambiguity aversion along with diffuse priors is identified as a driver
of the observed behavior in the laboratory.

Oprea, Charness, and Friedman (2014) study experimentally a standard pubic-goods
game with a rich communication protocol in both discrete and continuous time. They find
that voluntary provision of the public good is higher in continuous than in discrete time.
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This, however, is only the case if subjects have the possibility to communicate freely to co-
ordinate their contributions. Wilson and Vespa (2020) experimentally study a cheap-talk
game, while Reshidi, Lizzeri, Yariv, Chan, and Suen (2020) investigate agents’ information-
acquisition decisions before making an irreversible binary choice.

Battaglini, Nunnari, and Palfrey (2016) investigate a game of dynamic contributions to
a durable public good in the laboratory; i.e., the stock of the public good builds up over
time. Theirs is thus a setting of conventional payoff externalities, while, in our setting,
externalities are purely informational in nature; i.e., other players’ actions have no direct
impact on a given player’s payoffs—the presence of the other players impacts a given player
only via the information they produce over time. Battaglini, Nunnari, and Palfrey (2016)
find that subjects’ qualitative behavior is by and large consistent with the predictions of
the Markov Perfect Equilibria that were characterized in Battaglini, Nunnari, and Palfrey
(2014), although they find some evidence of non-Markovian history dependencies.

Chernulich, Horowitz, Rabanal, Rud, and Sharifova (2020) study an individual deci-
sion problem of market entry and exit decisions with and without counterfactual informa-
tion in an environment where the trade-off is similar to a two-armed bandit problem with
a safe arm and a risky arm. Hudja (2019) experimentally implements Strulovici (2010)’s
collective experimentation model. An individual experimentation problem is compared
to a collective experimentation problem where groups of three players face a majority-
vote. Fudenberg and Vespa (2019) analyze a signaling-game experiment and focus on the
effect of how types are assigned. A bandit problem of their signaling game is employed as
a robustness test in which subjects play against a computer.

The prevalence of MPE-type behavior in dynamic games is investigated by Vespa and
Wilson (2015, 2019) in the context of a prisoners’ dilemma where payoffs depend on a
binary state. Their game is set up in such a way that higher efficiency can be achieved by
symmetric non-Markovian play, while full efficiency can be achieved by asymmetric SPE.
They show that a substantial fraction of subjects behaved in a Markovian fashion. Those
who did not tended to aim for higher efficiency. As the complexity of the coordination
required to achievemore efficient outcomes than the bestMPE increased, the prevalence of
MPE play increased. Their findings thus suggest that one of the main draws of Markovian
behavior is the simplicity of the coordination required. In our setting, by contrast, MPEs
require more complex coordination than the best PBE.

On the other hand, MPEs feature turn-taking in our setting, while the best PBE does
not. Cason, Lau, and Mui (2013) study the emergence of turn-taking in the dynamic as-
signment game and highlight the importance of being able to teach dynamic strategies to
others as well as the importance of using strategies that allow for teaching and learning.
Leo (2017) studies both theoretically and experimentally flexible turn-taking. He shows
that turn-taking leads to substantial efficiency gains and efficiency achieved by subjects
is close to that expected in theory. Nevertheless, robust anomalies in subject behavior,
which cannot be attributed to pro-social behavior or strategic concerns, are prevalent in
his experimental implementation.
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3 TheTheoretical Framework
We borrow our theoretical reference framework from KRC. There are 𝑛 ≥ 1 players, each
of whom plays a bandit machine with two arms over an infinite horizon. One of the arms
is safe, and yields a known flow payoff of 𝑠 > 0whenever it is pulled. The other arm is risky
and can be either good or bad. If it is bad, it never yields any payoff. If it is good, it yields
a lump sum of ℎ > 0 at the jumping times of a Poisson process with parameter 𝜆 > 0. It is
assumed that 𝑔 ∶= 𝜆ℎ > 𝑠. Players decide in continuous time which arm to pull. Payoffs
are discounted at a rate 𝑟 > 0. If they knew the quality of the risky arm, players would
have a strictly dominant strategy always to pull a good risky arm and never to pull a bad
one. They are initially uncertain whether their risky arm is good or bad. Yet, the only way
to acquire information about the quality of the risky arm is to use it, which is costly as it
implies forgoing the safe payoff flow 𝑠. The 𝑛 players’ risky arms are either all good or all
bad. Players share a common prior belief 𝑝0 ∈ (0, 1) that their risky arms are good. Every
player’s actions as well as the outcomes of their actions are publicly observable; therefore,
the information one player produces benefits the other players as well, creating incentives
for players to free-ride on their partners’ efforts. Players thus share a common posterior
belief 𝑝𝑡 at all times 𝑡 ∈ ℝ+. All the parameter values and the structure of the game are
common knowledge.

The common posterior beliefs are derived from the public information via Bayes’ rule.
As a bad risky arm never yields any payoff, the first arrival of a lump sum fully reveals
the quality of all players’ risky arms. Thus, if a success on one of the players’ risky arms is
observed at instant 𝜏 ≥ 0, the common posterior belief satisfies 𝑝𝑡 = 1 for all 𝑡 > 𝜏. If no
success has been observed until instant 𝑡, the common posterior belief satisfies

𝑝𝑡 =
𝑝0𝑒−𝜆∫

𝑡
0 ∑
𝑁
𝑖=1 𝑘𝑖,𝜏 𝑑𝜏

𝑝0𝑒−𝜆∫
𝑡
0 ∑
𝑁
𝑖=1 𝑘𝑖,𝜏 𝑑𝜏 + 1 − 𝑝0

,

where 𝑘𝑖,𝜏 = 1 if player 𝑖 uses the risky arm at instant 𝜏 and 𝑘𝑖,𝜏 = 0 otherwise.

KRC show in their Proposition 3.1 that, if players are maximizing the sum of their
payoffs, all players 𝑖 ∈ {1,⋯ , 𝑛} choose 𝑘𝑖,𝑡 = 1 if 𝑝𝑡 > 𝑝∗𝑛 ∶= 𝑟𝑠

(𝑟+𝑛𝜆)(𝑔−𝑠)+𝑟𝑠 , and 𝑘𝑖,𝑡 = 0
otherwise. Note that 𝑝∗𝑛 is strictly decreasing in the number of players 𝑛. In particular,
in the single-agent case (𝑛 = 1), the decision maker optimally sets 𝑘1,𝑡 = 1 if 𝑝𝑡 > 𝑝∗1 ∶=
𝑟𝑠

(𝑟+𝜆)(𝑔−𝑠)+𝑟𝑠 , and 𝑘1,𝑡 = 0 otherwise.

KRC go on to analyze the game of strategic information acquisition, where each player
maximizes his own payoff, not taking into account that the information he produces is
valuable to the other players as well. They analyze perfect Bayesian equilibria in Markov
strategies (MPE), i.e., strategies 𝑘𝑖 ∶ [0, 1] → {0, 1}, 𝑝 ↦ 𝑘𝑖(𝑝), where a player’s action
after any history can be written as a time-invariant function of the common belief at that
history.10 Thus, the action of a player playing a Markov strategy depends on the previous

10In KRC, Markov strategies are actually defined as functions 𝑘𝑖 ∶ [0, 1] → [0, 1]. In order to make the
decision problem easier for our subjects, we have restricted the action space to {0, 1} rather than [0, 1]. Of
course, all equilibria in the game with the larger action space that only use actions in {0, 1} (called “simple
equilibria”) remain equilibria in the game with the smaller action space. We, however, lose KRC’s (unique)
symmetric MPE, which involves interior action choices on some open subinterval of beliefs.
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history only via the current belief. It is shown that, for beliefs close to 1 (0), playing risky
(safe) is a dominant action; for intermediate beliefs, players’ effort levels are strategic sub-
stitutes. In any MPE with a finite number of switches, all players will set 𝑘𝑖(𝑝) = 0 for all
𝑝 ≤ 𝑝∗1 (see Subsection 6.1 in KRC). Moreover, it is shown that there exists no MPE in
which all players play a cut-off strategy, i.e., a strategy that prescribes the use of the risky
arm for beliefs above a single cut-off and that of the safe arm below. Thus, the roles of pi-
oneer and free-rider must switch at least once in Markov equilibrium.11 HKR extend the
analysis to non-Markovian PBE. They show that on the path of play in the average-payoff
maximizing PBE, all players set 𝑘𝑖(𝑝) = 1 for all 𝑝 > 𝑝∗1 , and 𝑘𝑖(𝑝) = 0 otherwise.

4 Parametrization and Experimental Design

4.1 Experimental Implementation
In our experimental treatments, the number of players will be 𝑛 = 2 or 𝑛 = 3. We choose
the discount rate 𝑟 = 1120 . To implement the infinite-horizon game in the laboratory, we
end the game at the first jump time of a Poisson process with parameter 𝑟.12 With one
unit of time corresponding to a second in our experimental implementation, games thus
last 120 seconds in expectation. Ours being a rather complicated game that places high
demands on subjects’ concentration, our goal was to limit the duration of the game, while
at the same time allowing for the collection of a wealth of data. We set the probability that
the risky arm is good 𝑝0 = 12 , the safe payoff 𝑠 = 10, the lump-sum amount paid out by a
good risky arm ℎ = 2500, and the arrival rate of lump sums on the good risky arm 𝜆 = 1100 .
Thus, 25 = 𝑔 > 𝑠 = 10. With this parametrization, the game starts in the belief region
where risky is a dominant action; if no breakthrough arrives, play then moves into the
belief region where safe and risky are Markovian mutually best responses, before entering
the region where safe is dominant.13

The realizations of all random processes were simulated ahead of time.14 We gener-
ated six different sets of realizations of the random parameters controlling the length of

11The intuition for this result is best described in the context of a two-player game. Indeed, suppose to the
contrary that there existed an equilibrium in cut-off strategies. As there is a region of beliefs in which safe
and risky aremutually best responses, both players cannot use the same cut-off in equilibrium; i.e., one player
plays the role of pioneer, while the other one free-rides, throughout the belief region where safe and risky are
mutually best responses. As he gets all his information for free in the relevant belief region, the free-rider’s
payoff function will be higher than the pioneer’s. As a player’s propensity to play risky is increasing in his
own payoff, however, this would imply that the free-rider entered the region in which risky is dominant at a
more pessimistic belief than the pioneer.

12Subjects knew that the end time of the game corresponded to the first jumping time of a Poisson process
with parameter 𝑟 but did not know the realization of this process at any time before the game ended. In
particular, the time axis they saw on their computer screens gradually grew longer as time progressed, so
that they could not infer the end date. Please see Appendices B and C for details and for the instructions the
subjects received.

13The fact that payoffs from a good risky arm are realizations of a compound Poisson process implies a
large variance of payoff realizations. This makes it impossible to identify the various solution concepts from
the realized payoffs (see Subsection 5.3 for a more detailed discussion).

14As all our stochastic processes are Lévy processes, simulating their realizations ahead of time is equiv-
alent to simulating them as the game progresses. In order to increase the computational efficiency of the
implementation, we chose to simulate them ahead of time.
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the game, the quality of the risky arm, and the arrivals of the good risky arm. These corre-
sponded to six different games that each of our subjects played. Tomake our findingsmore
easily comparable, we have kept the same realizations for both the strategic and the control
treatments.15 Participants’ interfaces (see Appendix B) were updated every second.16

Subjects were randomly assigned to groups of 𝑛 = 2 or 𝑛 = 3 players. We used a
between-subject design: Each group was randomly assigned either to a control treatment
or to a strategic treatment, and played the six games in random order. To ensure a bal-
anced data-collection process, we replicated any order of the six games that was used for 𝑘
(𝑘 ∈ {1,⋯ , 10}) groups in the strategic treatment for 𝑘 groups in the control treatment
as well. Subjects could see their fellow group members’ action choices and payoffs on
their computer screens. They had to choose an action before the game started and could
switch their action at any point in time by clicking on the corresponding button with their
mouse.17

All experimental sessions took place in July and August 2017 at the BizLab Experimen-
tal Research Laboratory at UNSWSydney. All subjects were recruited from the university’s
subject pool and administered by the online recruitment system ORSEE (Greiner 2015).
All participants were native speakers of English. In total, 100 subjects, 46 of whom were
female, participated in 40 sessions. The participants’ age ranged from 18 to 35 years, with
an average of 20.78 and a standard deviation of 2.43. Because the implementation was
programatically very intensive and because we wanted to collect eye-tracking data, only
between 2 and 3 subjects participated at a time in each session. Upon arrival, participants
were seated in front of a computer at desks which were separated by dividers to minimize
potential communication. Participants received written instructions and had the oppor-
tunity to ask questions.18 After the subjects had successfully completed a simple compre-
hension test, the eye-tracking devices were calibrated, after which the subjects started the
experiment. The experiment was programmed in zTree (Fischbacher 2007). At the end
of the experiment, we collected some information on participants’ demographic attributes
and risk attitudes.19 They were then privately paid their cumulated experimental earnings
from one randomly selected game in cash (with a conversion rate of E$ 100 = AU$ 1) plus
a show-up fee of AU$ 5. No subject was allowed to participate in more than one session.
The average session lasted about 50 minutes, with average earnings of AU$ 23.86 (with a
standard deviation of AU$ 9.95).

15Details are available from the authors upon request.
16Thus, our setting approaches the “Inertial Continuous-Time” setting in Calford and Oprea (2017). We

were able to optimize at the margin so as to decrease the lag times in zTree to be less than 250 milliseconds,
i.e., shorter than human reaction time, by constraining the maximum number of switches, game length etc.
allowed. These constraints were unproblematic in all of the sessions.

17See Appendix B for more details and screen shots.
18The instructions handed out to all participants can be found in Appendix C.
19Thetheoretical treatment of strategic-experimentation problemshas so far focussed on risk-neutral play-

ers only. Given the small stakes at play in the experiment, we did not expect subjects’ risk attitudes to have an
impact on their behavior. Consistently with this prediction, our data do not allow us to establish any effect
of risk aversion on subjects’ behavior. Details are available from the authors upon request.
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4.2 Behavioral Hypotheses
The best PBE (as well as all MPEs with a finite number of switches) predict players to play
safe at all beliefs 𝑝 ≤ 𝑝∗1 , while efficiency would require that they play risky at all beliefs
𝑝 > 𝑝∗𝑛 , where 𝑝∗𝑛 < 𝑝∗1 . Single players and players playing the best PBE should play risky
at all beliefs 𝑝 > 𝑝∗1 , i.e., in the average-payoff maximizing PBE, players on path adopt the
same cut-off behavior as a single agent. In any MPE, by contrast, since at least one player
is not playing a cut-off strategy, at least one player will play safe at some beliefs above 𝑝∗1 .
Indeed, it is possible to derive a lower bound 𝑝‡ ∈ (𝑝∗1 , 𝑝𝑚), where 𝑝𝑚 ∶= 𝑠𝑔 is a myopic
player’s cut-off belief, such that, for all beliefs in (𝑝∗1 , 𝑝‡), at least one player plays safe.20 In
the following, we refer to the belief region (𝑝∗1 , 𝑝‡) as the free-riding region. By the same
token, we can derive an upper bound ̄𝑝 on the lowest belief at which risky is a dominant
action.21 Table I provides an overview of belief thresholds, together with their numerical
values given our parameters.

Table I: Belief Thresholds

Symbol Interpretation Value

𝑝0 Prior belief 0.5
𝑝𝑚 Myopic cutoff 0.4
𝑝∗1 Single-agent cutoff 0.2326
𝑝∗2 Efficient cutoff for 𝑛 = 2 0.1031
𝑝∗3 Efficient cutoff for 𝑛 = 3 0.0535
̄𝑝 [𝑝∗1 , ̄𝑝] is a superset of the free-riding region 0.3578 (0.3742)
𝑝‡ (𝑝∗1 , 𝑝‡) is a subset of the free-riding region 0.3428 (0.3609)

The values for ̄𝑝, 𝑝‡ are for 𝑛 = 2 (𝑛 = 3).

As 𝑝0 = 0.5 > 0.4 = 𝑝𝑚, players start out with a belief that makes playing risky the
dominant action. If, in the strategic treatment, 𝑛 playerswere uninterruptedly playing risky
and there was no breakthrough, the belief would drop to 𝑝𝑚 after 40.6/𝑛 seconds, to our
upper bound in the gamewith 𝑛 = 2 players (𝑛 = 3 players) ̄𝑝 after 58.5/𝑛 (51.5/𝑛) seconds,
to our lower bound in the game with 𝑛 = 2 players (𝑛 = 3 players) 𝑝‡ after 65.0/𝑛 (57.0/𝑛)
seconds, to 𝑝∗1 after 119.4/𝑛 seconds, to 𝑝∗2 after 216.4/𝑛 seconds, and to 𝑝∗3 after 287.4/𝑛
seconds. For the control treatment, the same times apply with 𝑛 = 1. The bang-bang
structure of the best PBE is highlighted in Figure 1 in Section 5.

4.2.1 Free-Riding

Let �̂�𝑖 be the time player 𝑖’s risky arm is revealed to be good or the end of the game,
whichever arrives first. In order to measure the prevalence of free-riding, we investigate

20Indeed, as KRC show (their Equation (6), p.49), it is a best response for player 𝑖 to play safe if and only if
his value function 𝑢𝑖(𝑝) satisfies 𝑢𝑖(𝑝) ≤ 𝑠 +𝐾−𝑖(𝑝)𝑐(𝑝), where𝐾−𝑖(𝑝) ∶= ∑𝑗≠𝑖 𝑘𝑗(𝑝) is the number of players
other than 𝑖 who play risky at belief 𝑝, and 𝑐(𝑝) ∶= 𝑠 − 𝑝𝑔 is a player’s myopic opportunity cost for playing
risky, given the belief 𝑝. An upper bound on a player’s equilibrium value function 𝑢𝑖 is given by 𝑉𝑛,𝑝∗1 , the
value function of all players playing risky on (𝑝∗1 , 1], and safe on [0, 𝑝∗1 ]. Thus, a lower bound 𝑝‡ is given by
the unique root 𝑉𝑛,𝑝∗1 (𝑝

‡) − 𝑠 − (𝑛 − 1)𝑐(𝑝‡) = 0.
21For this, we use the fact that the single-agent value function 𝑉∗1 constitutes a lower bound on a player’s

equilibrium value function 𝑢𝑖, and find our upper bound ̄𝑝 as the unique root 𝑉∗1 ( ̄𝑝) − 𝑠 − (𝑛 − 1)𝑐( ̄𝑝) = 0.
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the behavior of the average experimentation intensity, where, following KRC, we define
the experimentation intensity at instant 𝑡 as ∑𝑛𝑖=1 𝑘𝑖,𝑡. Note that, in the control treatment, a
player conforming to the theoretical prediction will always play risky until his belief hits
𝑝∗1 . The same holds true in the best PBE in the strategic setting, but conditionally on no
success arriving, beliefs will decrease faster in the strategic setting, as player 𝑖’s belief also
decreases in response to player 𝑗’s hapless experimentation. Since both effects go in the
same direction, we hypothesize that average experimentation intensities are lower in the
strategic treatment. To set the stage, we thus formulate the following

Prediction 1. The average experimentation intensity ∑
𝑛
𝑖=1 ∫
�̂�𝑖
0 𝑘𝑖,𝑡 𝑑𝑡
∑𝑛𝑖=1 �̂�𝑖

is lower in the strategic
treatment than in the control treatment.

Thus, a lower average experimentation intensity in the strategic treatment need not be
due to subjects’ strategic free-riding, since beliefs decrease faster in the strategic treatment.
Strategic equilibrium free-riding can manifest itself in two ways: (i) some players play safe
while the belief is above the single-agent cutoff 𝑝∗1 ; (ii) players stop experimenting at the
single-agent cutoff 𝑝∗1 (while efficiency would require them to experiment until the belief
hits 𝑝∗𝑛). Effect (i) is not predicted to occur in the best PBE, whereas it is predicted to occur
in any MPE. Effect (ii), by contrast, is predicted to arise in any equilibrium, Markovian or
not. We can test for Effect (i) by comparing average experimentation intensities in the free-
riding belief region where at least one player plays safe in any MPE. Theory would predict
this intensity to be 1 in the control treatment; in the strategic treatment, the best PBE
would predict it to be 1 as well, whereas it would be strictly less than 1 in any MPE. We
therefore interpret a significantly lower average experimentation intensity for the strategic
treatment in this belief region as evidence both for strategic free-riding and against the best
PBE. These considerations lead us to formulate the following

Hypothesis 1. (a)The average experimentation intensity ∑
𝑛
𝑖=1 ∫
�̂�𝑖
0 𝑘𝑖,𝑡 𝑑𝑡
∑𝑛𝑖=1 �̂�𝑖

in the free-riding region

(𝑝∗1 , 𝑝‡) is strictly lower in the strategic treatment than in the control treatment.
(b) Moreover, it is no higher in the safe-dominant region [0, 𝑝∗1 ].

Our game is one of purely (positive) informational externalities; i.e., players always
have the option of ignoring the additional information they get for free from their part-
ner(s). Therefore, players should do better in the strategic treatment, which motivates our
following

Hypothesis 2. Players’ average final payoffs are higher in the strategic treatment.

4.2.2 Structural Properties of the Best PBE

Cut-off behavior consists in a player playing risky at the outset, and continuing to play risky
until his risky arm is revealed to be good, the game ends, or he switches to the safe action,
and continues to play safe until the game ends or his risky arm is revealed to be good.
As explained above, KRC predict that subjects will use cut-off strategies in the control
treatment; by the same token, HKR show that cut-off behavior prevails on path in the
strategic setting also if the best PBE is played.

This leads us to the following
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Hypothesis 3. There is no difference in the frequency of cut-off behavior between the two
treatments.

Even if players were using cut-off strategies, they would not be conforming to the the-
oretical predictions if they were applying different cut-offs. Indeed, theory predicts that
neither in the single-agent problem of the control treatment nor in the best PBE should
exactly one of the players plays risky at any time. This is in contrast to any of KRC’s “sim-
ple” MPEs, which all feature a pioneer who is experimenting alone on some interval of
beliefs.

This motivates

Hypothesis 4. The proportion of time before a first breakthrough in the group during which
exactly one player plays risky is the same in the strategic treatment as in the control treatment.

5 Experimental Results
This section is, in the main, devoted to testing our behavioral hypotheses of Subsection
4.2. Throughout this section, we conduct our analysis by averaging over the six games each
subject played. Analysis of the individual games can be found inAppendixA (Hoelzemann
and Klein 2021). For each of the six games, we conducted four treatments (strategic and
control treatment with 𝑛 = 2 and 𝑛 = 3), with ten groups each. We had simulated all
the relevant parameters ahead of time, as explained in Section 4. These included separate
processes for the games’ duration, the quality of the risky arm and the timing of successes
on the risky arm in case it was good. The duration of the games ranged from 32 seconds
for Game 5 to 230 seconds for Game 4.

5.1 Average Experimentation Intensities
Aswe have argued in Subsection 4.2, we should expect average experimentation intensities
to be lower in the strategic treatment. Recall that, in the strategic treatment, the experimen-
tation intensity is calculated for each player until the time of a first breakthrough by any
player in a group or the end of the game, whichever arrives first. In the control treatment,
this measure is calculated until the time where the individual player observes a success or
the game ends, whichever occurs first. Table II lists the observed mean experimentation
intensities, using group averages across games for our four treatments.

Table II: Average Experimentation Intensities

Strategic Treatment Control Treatment

Group Obs. Experiment. Obs. Experiment.
Size Intensity Intensity

𝑛 = 2 60 .594 [.186] 60 .818 [.212]
𝑛 = 3 60 .539 [.244] 60 .839 [.180]

Average [st. dev.] experimentation intensity using group averages.

In the strategic treatment, for groups of size 𝑛 = 2 (𝑛 = 3), the ex ante expected ex-
perimentation intensity for the best PBE is 0.786 (0.712). For MPE, the ex ante expected
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experimentation intensity is between 0.739 and 0.750 (0.654 and 0.668).22 Conditional on
the random realizations of the stochastic processes in the experiment, the average over the
game realizations for the best PBE is 0.609 (0.517), while, for MPE, it is 0.604 (0.481), for
𝑛 = 2 (𝑛 = 3). By contrast, in the control treatment, the ex ante expected experimentation
intensity would have been 0.903. Conditional on the random realizations of the stochastic
processes, the average over the game realizations is 0.820 (0.853) for 𝑛 = 2 (𝑛 = 3). Thus,
the observed experimentation intensities are very much in line with the conditional pre-
dictions given the realizations of the random parameters, for either equilibrium concept.23

We now revisit Prediction 1 and Hypotheses 1-4. To test our behavioral hypotheses
from Subsection 4.2 and treatment differences non-parametrically, we apply two-sided
Wilcoxon rank-sum (Mann-Whitney) tests, using group averages as independent observa-
tions. We begin with Prediction 1. As Table II reveals, the additional presence of one (two)
perfectly positively correlated risky arm(s) leads to lower experimentation intensities. This
is highly statistically significant in both settings with 𝑛 = 2 and 𝑛 = 3. The corresponding
p-values in both cases are 0.0001.24 This is in line with Prediction 1, a finding we summa-
rize in the following

Remark 1. The average experimentation intensity ∑
𝑛
𝑖=1 ∫
�̂�𝑖
0 𝑘𝑖,𝑡 𝑑𝑡
∑𝑛𝑖=1 �̂�𝑖

is lower in the strategic treat-
ment. This result holds for both 𝑛 = 2 and 𝑛 = 3.

In Figure 1, we illustrate the evolution of experimenting subjects divided by all sub-
jects across all games and all subjects. More precisely, the share of experimenting subjects,
before their risky arm was revealed to be good or the game ended, whichever happened
first, is indicated at each unit of calendar time. The denominator, accounting for all sub-
jects still playing, decreases as calendar time progresses and individual action choices gain
in relative weight. This is captured by a color gradient, which highlights the evolution of
subjects still actively playing (many = red to few = green). The theoretical predictions of
both the optimal single-agent solution and the best PBE are included according to group
size. These have a bang-bang structure, with a cut-off at the point in time at which the
belief threshold 𝑝∗1 would be reached if players adhered to the theoretical prediction, for
any 𝑛.

22Because of the multiplicity of MPE, it is not possible to give a point prediction of MPE experimentation
intensities.

23Indeed, a one-sample t-test indicates that there is no evidence that the observed mean experimenta-
tion intensity is different from the predicted values (all p-values ≥ 0.4877), with the exception of the MPE
prediction for 𝑛 = 3, with a p-value of 0.0704.

24The Wilcoxon ranksum test treats group averages as independent observations. Yet, one might argue
that players’ action choices are not independent across subsequent games they play. As a robustness test,
we additionally conduct a Wilcoxon test where we also average over all games for each group, thus yielding
one independent data point across all games for each group of interacting subjects. The corresponding p-
values for 𝑛 = 2 (𝑛 = 3) are 0.0019 (0.0012). In Section 6.4, we complement the non-parametric analysis
by reporting results from ordinary least-square regressions with random effects and clustering of standard
errors by group. We find no effect of the number of games previously played on subjects’ behavior, and results
reported throughout the paper remain robust.

14



The share of experimenters by treatment across all games and subjects is shown. The color gradient displays
the evolution of subjects still in the game (many = red to few = green). Optimal, and best-PBE, predictions

are indicated in black color for all group sizes and treatments. For the control treatment, share of
experimenters is highlighted for both 𝑛 in one panel. Labels indicate the corresponding lines for groups of

size 𝑛 = 2 and 𝑛 = 3.

Figure 1: Share of Experimenters by Treatment

As is evident from the figure, players change their behaviors over time. While often
playing risky at the beginning, players’ use of the risky arm decreases as time passes and
no success is observed. This suggests that our subjects adapted to the evolving informa-
tion about their environment. The stark bang-bang structure of the theoretical predictions,
however, is not borne out by the average experimentation intensities. Note that the theo-
retically predicted cut-off only applies “on path,” i.e., it presupposes that everyone involved
played risky with an intensity of 1 at all times before the cut-off. If this is not the case, the
optimal “off-path” cut-off shifts to the right on the time axis. As we shall discuss in greater
detail below, updated beliefs below 𝑝∗1 were reached in both the strategic and the control
treatments only in two of the six games we simulated. As we shall also see below, subjects
in the control treatment mostly followed cut-off strategies. As is apparent from the figure,
the average proportion of risky play stays quite high for longer in the control treatment.
This is consistent with theory, since subjects only have a single signal per unit of time to up-
date their beliefs with in the control treatment. Meanwhile, they have two or three signals
if their partner(s) also play(s) risky in the strategic treatment. Thus, information arrives
faster, meaning that subjects become pessimistic faster (conditionally on no success being
observed), in the strategic treatment. Subjects also alternate between risky and safe much
more frequently and start to do so earlier. The figure also shows a remarkable similarity in
subjects’ behavior whether 𝑛 = 2 or 𝑛 = 3 in the control treatment, which is also consistent
with theory; indeed, theory predicts subjects to behave like single agents, independently
of group size 𝑛.

5.2 Free-Riding
As we have discussed in Subsection 4.2.1, the reduced exploration intensity in the strategic
treatment, which we have documented in the previous subsection, may well be partially, or
even completely, owed to the faster information accumulation in the strategic treatment.
Yet, from a theoretical standpoint, we are more interested in the phenomenon of strategic
free-riding, i.e., subjects’ taking advantage of the information they receive for free from
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their partners in order to reduce their own exploration efforts. As we have discussed in
Subsection 4.2.1, our setup allows us to identify Aspect (i) of strategic free-riding via the
comparison of experimentation rates between the strategic and control treatments for be-
liefs in (𝑝∗1 , 𝑝‡), i.e., a belief region in which at least one player is predicted to play safe and
risky each in any MPE; by contrast, all players are predicted to play risky in the best PBE
and in the efficient solution, as well as in the single-agent optimum. We therefore inter-
pret a lower experimentation intensity in the strategic treatment for this belief region as
evidence of both strategic free-riding and against the best PBE. The following table sum-
marizes average experimentation intensities in the belief region (𝑝∗1 , 𝑝‡).25

Table III: Average Experimentation Intensities in Free-Riding Region

Strategic Treatment Control Treatment

Group Obs. Experiment. Obs. Experiment.
Size Intensity Intensity

𝑛 = 2 40 .505 [.155] 40 .776 [.311]
𝑛 = 3 40 .510 [.220] 39 .779 [.243]

Average [st. dev.] experimentation intensity using group averages.

The average experimentation intensity in the free-riding region is substantially and sig-
nificantly lower in the strategic treatment. Independently of group size, the p-values of the
two-sided Wilcoxon ranksum test amount to 0.0001.

Result 1a. Subjects are free-riding: average experimentation intensities are lower in the
strategic treatment over the free-riding region (𝑝∗1 , 𝑝‡).

Result 1a, taken together with Remark 1, raises the question as to what extent subjects
free-ride “correctly,” i.e., at the “right” beliefs. In order to investigate this question, we ana-
lyze subjects’ experimentation intensities in the belief region ( ̄𝑝, 𝑝0], where risky is a domi-
nant action (whichwe subsequently label the risky dominant region). For 𝑛 = 2, the average
experimentation intensity is lower in the strategic treatment with 0.675 [0.222] than in the
control treatment with 0.899 [0.161], where we report the standard deviation in square
brackets. The same applies to our three-player groups, where the average experimenta-
tion intensity amounts to 0.632 [0.281] in the strategic treatment, while it is substantially
higher in the control treatment with 0.932 [0.152]. These differences are highly statisti-
cally significant, with the p-values of the two-sided Wilcoxon ranksum test amounting to
0.0001 for both group sizes. While there is no theoretical rationale for the lower experi-
mentation intensities in the risky dominant region, one may speculate that it may be due to
subjects’ aiming to reduce their experimentation intensities in the free-riding region, while
not hitting this region precisely. Indeed, there is a theoretical rationale (namely, MPE) for
different experimentation intensities across these two regions in the strategic treatment;
there is no such rationale in the control treatment, where optimality would require an ex-
perimentation intensity of 1 in both belief regions.

25We omit Games 5 and 6 from this table, since Player 2 has a success after 9 seconds on the risky arm
in Game 6, and Game 5 lasted only 32 seconds, which implies that the free-riding region cannot be attained
in the control treatment and only lasts for a few seconds in the strategic treatment, if it is attained at all.
The other missing observation corresponds to one three-player group in the control treatment that has not
reached the free-riding region.
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In order to investigate this question further, we conduct a “difference-in-differences”-
analysis, comparing the difference in intensities across belief regions and across treatments.
As there is no a priori reason for imprecisions in belief updating or in the computation of
the relevant thresholds to be more prevalent in the strategic treatment as compared to the
control treatment, we interpret a bigger difference across belief regions in the strategic
treatment as suggestive of MPE-style free-riding. For 𝑛 = 2, this difference-in-differences
is statistically significantly higher at the 5%-level in the strategic treatment, with a p-value
of 0.0389. By contrast, no such evidence can be established for groups of size 𝑛 = 3, where
the effect is not statistically significant (p-value of 0.5118). Thus, there is stronger evidence
that the free-riding we document is motivated by strategic rationales for the smaller group
size 𝑛 = 2. As we discuss in greater detail in Subsection 6.2, behavior was generally more
reminiscent of MPE-play for the smaller group size 𝑛 = 2.

To conclude our discussion of free-riding, we turn to the region [0, 𝑝∗1 ], where safe is
a dominant action in both the strategic and control treatments. Indeed, the KRC model,
which we have chosen for our experimental investigation on account of its tractability, ex-
hibits no encouragement effect.26 We can compute the average experimentation intensities
in the region [0, 𝑝∗1 ], for Game 4 as well as for the two-player groups in Game 2.27 Even
in this region, the average experimentation intensity is lower in the strategic treatment:
0.511 [0.042] in the strategic treatment for Game 4 with 𝑛 = 2 vs. 0.655 [0.237] in the con-
trol treatment; 0.325 [0.091] vs. 0.756 [0.220] in Game 4 for 𝑛 = 3, and 0.511 [0.063] vs.
0.696 [0.251] in Game 2. Thus, mean group averages are lower in the strategic treatment
compared to the control. For Game 2, the effect is not significant (p-value of 0.1149). For
Game 4, the p-value is 0.0849 (0.0015) for 𝑛 = 2 (𝑛 = 3). This leads us to state the following

Result 1b. There is no encouragement effect in our data.

Results 1a and 1b are fully in line with our Hypothesis 1. They also militate against our
subjects’ being motivated by social preferences.

5.3 Payoffs
Strategic interaction is predicted to arise among players as a result of (positive) informa-
tional externalities, i.e., the information produced by their partners allows players to make
better decisions and hence to secure themselves higher payoffs. While certain courses of
action are better than others from an ex ante expected point of view, the mapping from
actions to payoffs is of course very stochastic in our setting, as it depends on the partic-
ular realizations of the random variables governing the length of the game, the quality of
the risky arm and the timing of lump-sum arrivals from a good risky arm. Indeed, condi-
tionally on a particular realization of the stochastic process, ex ante optimal behaviors may

26The encouragement effect has been identified by Bolton and Harris (1999) and is not predicted to arise
in the KRC setting. By virtue of this effect, players experiment more than if they were by themselves. They
do so in the hope of producing public good news, which, in turn, makes their partners more optimistic.
As their partners become more optimistic, they will be more inclined to experiment, thus providing some
additional free-riding opportunities to the first player. This effect is absent in KRC, because here good news
is conclusive: It resolves all uncertainty, so that, as soon as there is good news, players are not interested in
free-riding any longer.

27These are the only settings in which this region is reached (and lasts for more than a few seconds) for
both the strategic and the control treatments.
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do very poorly, while ex ante very eccentric behaviors may well be optimal. Moreover,
in our implementation, payoffs resulted from compound stochastic processes, implying a
large ex ante variance in the mapping from behaviors to payoffs. We would thus caution
against ascribing inferential value to payoff comparisons beyond what we do here, namely
to compare payoffs between the strategic and control treatments, for a given realization of
the stochastic processes.28 For most of our inferences, though, we rely on our subjects’ be-
ing ignorant of the realizations of the stochastic processes when they made their choices,
which “thus filters out the noise” that prevails in the mapping from actions to payoffs.

Our test in this subsection is thus a simple one: Do subjects take advantage of the
information they get for free from their partners in order to achieve higher payoffs in the
strategic treatment? Theoretical ex ante expected per-capita payoffs are highest for the effi-
cient solution, followed by the best PBE and thenMPE, in the strategic treatment.29 Any of
these solution concepts implies, to varying degrees, players’ taking advantage of the addi-
tional information they get from their partners, and thus leads to higher predicted payoffs
than in the single-agent optimum. For groups of size 𝑛 = 2 (𝑛 = 3), the ex ante expected
per-capita payoff for the efficient solution is 1714.81 (1774.59), while, for the best PBE, it
is 1699.00 (1734.90). For MPE, the ex ante expected per-capita payoff is between 1687.91
and 1690.68 (1714.49 and 1721.46).30 For the single-agent optimum, the ex ante expected
payoff is 1621.01. One can interpret the difference between the value of the efficient group
solution and that of the single-agent optimum, 93.80 and 153.58 for groups of size 𝑛 = 2
and 𝑛 = 3, respectively, asmeasuring the size of the social dilemmawe are analyzing. While
entailing conspicuous differences in behavior, the impact on payoffs from the competing
equilibrium concepts is small, roughly 10 (15) for groups of size 𝑛 = 2 (𝑛 = 3). By con-
trast, even the lower bound for MPE payoffs entails an important payoff gain with respect
to autarky, underlining the importance of the positive informational spillovers: 66.90 and
93.48 for groups of size 𝑛 = 2 and 𝑛 = 3, respectively.

Table IV: Average Final Payoffs

Strategic Treatment Control Treatment

Group Obs. Final Min Max Obs. Final Min Max
Size Payoffs Payoffs

𝑛 = 2 60 1235.50 [1235.11] 0.00 3945.00 60 1030.75 [1272.16] 0.00 3870.00
𝑛 = 3 60 1420.28 [1045.41] 0.00 3363.33 60 981.22 [904.08] 0.00 2860.00

Average [st. dev.] final payoffs using group averages.

Table IV displays the average final payoffs using group averages across games for our
four treatments. Average final payoffs are much higher in the strategic treatment than
in the control treatment, for both group sizes. This is statistically significant: for 𝑛 = 2

28Recall from Section 4 that we have kept the same realizations of the random processes for the strategic
and control treatments.

29This is not necessarily the case given the particular realizations of the stochastic process; please see Table
A.3 in Appendix A.2 of Hoelzemann and Klein (2021).

30Because of the multiplicity of MPE, it is not possible to give a point prediction of MPE payoffs.
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(𝑛 = 3), the corresponding p-values are 0.0674 (0.0103).31 Thus, our subjects indeed take
advantage of the positive informational externalities in the strategic treatment, lending
support to Hypothesis 2.

Result 2. For both group sizes, players’ average final payoffs are higher in the strategic treat-
ment.

5.4 Cut-Off Behavior
As we have pointed out above, optimality in the individual decision-making problem in
our control treatment implies cut-off behavior, defined by a unique threshold belief above
which it prescribes risky play, while prescribing safe play below it. The best PBE also fea-
tures cut-off behavior on the path of play while KRC have shown that there does not exist
an MPE in cut-off strategies. If subjects were trying to play the best PBE, therefore, we
should observe roughly the same level of cut-off behavior in the strategic and the control
treatments. The following table shows that the data emphatically reject this hypothesis,
as cut-off behavior drops from roughly 80% in the control treatment to less than 33% in
the strategic treatment. As it is not clear what it means for a group to engage in cut-off
behavior, we report each individual subject’s decisions.

Table V: Average Frequency of Cut-Off Behavior

Strategic Treatment Control Treatment

Group Obs. Total (Relative) Obs. Total (Relative)
Size Frequency Frequency

𝑛 = 2 120 35 (.292) 120 100 (.833)
𝑛 = 3 180 59 (.328) 180 142 (.789)

Total number of cut-offs (number of cut-offs divided by total observations).

The difference between the treatments is statistically significant, yielding p-values of
0.0001 in both settings. When, in the strategic set-up, one excludes Games 5 and 6, which
are characterized by either a short duration (Game 5 lasted only 32 seconds) or a resolution
of uncertainty that occurs very early in the game (with Player 2 achieving a success after
exploring for 9 seconds in Game 6), the total number of cut-off observations drops to 5
(23) out of 120 (180) overall observations for 𝑛 = 2 (𝑛 = 3).

To complement our binary measure of cut-off behavior, we are also analyzing a more
“continuous” measure of cut-off behavior in order to capture the distance of a subject’s
behavior to a cut-off strategy.32 In particular, wemeasure the proportion of time in which a
subject plays safe before ever playing risky, or plays risky after they had previously switched

31To verify that our results are not driven by one particular game that may have unique features, we have
computed our statistical tests each time excluding a different game. Differences in payoffs always remain
statistically significant. This observation is confirmed by our ordinary least-square regressions with random
effects controlling for learning effects (see Subsection 6.4), where results do not qualitatively change: we find
a strong positive effect of the correlation structure—our strategic treatment—on payoffs. The same also holds
true for groups of size 𝑛 = 2.

32We are indebted to an anonymous referee for the suggestion.
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from risky to safe, before his risky arm is revealed to be good or the end of the game,
whichever arrives first. We define 1 minus this proportion of time as our continuous cut-
off measure, so that a score of 1 indicates perfect cut-off behavior. While this measure has
some shortcomings (e.g., a subject starting with risky, then switching repeatedly back to
the risky arm for short amounts of time after having switched to safe, would be classified
as being close to cut-off behavior), we think that, in conjunction with our cruder binary
measure, it can serve as a useful robustness test. In the strategic treatment, this measure
amounts to 0.7511 (0.7737) and in the control treatment to 0.9590 (0.9284) for groups of
size 𝑛 = 2 (𝑛 = 3). This difference is highly statistically significant for both 𝑛, with 𝑝-values
of 0.0001.33

Result 3. For both group sizes, the frequency of cut-off behavior is higher in the control treat-
ment, contradicting Hypothesis 3.

5.5 Pioneers
In the control treatment as well as in the best PBE, players are predicted to play risky on
(𝑝∗1 , 12]; i.e., conditionally on no success arriving, players should switch from risky to safe
only once, and do so at the same time, at which their beliefs reach 𝑝∗1 . Thus, if subjects
conformed to the best PBE, we should observe lonely pioneers for roughly the same pro-
portion of time in both treatments.

Table VI: Proportion of Time with a Single Pioneer

Strategic Treatment Control Treatment

Group Obs. Single Obs. Single
Size Pioneer Pioneer

𝑛 = 2 60 .634 [.298] 60 .198 [.244]
𝑛 = 3 60 .497 [.338] 60 .080 [.168]

Average [st. dev.] proportion of time with a single pioneer in a group.

Table VI shows the average proportion of time during which exactly one player is ex-
ploring before a first breakthrough by any player in his group. It is more than three times as
large in the strategic treatment and the difference between treatments is highly statistically
significant with p-values of 0.0001 for both 𝑛 = 2 and 𝑛 = 3. Thus, Hypothesis 4 is also
emphatically rejected.

Result 4. Theproportion of time before a first breakthrough in the group during which exactly
one player plays risky is higher in the strategic treatment, contradicting Hypothesis 4. This
result holds for both 𝑛 = 2 and 𝑛 = 3.

33Our conclusion remains qualitatively unchanged if we instead use a more “lenient,” less discriminating,
measure where, after a switch from risky to safe, we focus only on a subject’s second spell on the risky arm.
Specifically, we measure the proportion of time in which a subject plays safe before playing risky plus the
proportion of time taken up by the subject’s second spell on the risky arm, before his risky arm is revealed to
be good or the end of the game, whichever arrives first, and define 1 minus this proportion as our alternative
measure of cut-off behavior. In the strategic treatment, this measure is 0.8341 (0.7975) while in the control
treatment it is 0.9644 (0.9403) for groups of size 𝑛 = 2 (𝑛 = 3). The corresponding 𝑝-values are both 0.0001.
Thus, our conclusion that subject behavior was closer to cut-off behavior in the control treatment seems quite
robust to how we measure the “distance to cut-off behavior.”
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6 Discussion
In the previous section, we have seen that subjects’ behavior differs starkly from the pre-
dictions of the best PBE. In this section, we provide additional results as well as robustness
tests of the results presented in Section 5. We also discuss possible interpretations of sub-
jects’ behavior in light of some qualitative features of KRC’s Markov Perfect Equilibria.

6.1 Switches of Action
As pointed out above, in the best PBE, as well as in the single-agent optimum, players are
predicted to switch from risky to safe at most once. Meanwhile, the turn-taking behavior
predicted byMPE implies that players should switch armsmore often in the strategic treat-
ment. Yet, learning also tends to be faster in the strategic setting, so that beliefs may more
quickly reach the threshold at which the player will want to change his action.34 Recall that
for any number of role changes, there exists an MPE with that number of role changes, as
KRC show. For a two-player game, this, e.g., implies that one of the players must switch
actions at least twice, with the other one switching once, before 𝑝∗1 is reached.35

To control for the effect that, the longer the game goes on, the more time players have
to switch actions, we define the incidence of switches as the number of a player’s switches
in a given game per unit of effective time, where effective time is understood as the time
before the game ends or the player’s risky arm is revealed to be good, whichever happens
first.

Table VII: Average Number of Switches per Player

Strategic Treatment Control Treatment

Group Obs. Switches Obs. Switches
Size per Player per Player

𝑛 = 2 60 3.067 [2.450] 60 .792 [1.063]
𝑛 = 3 60 2.261 [2.040] 60 .778 [1.080]
Average [st. dev.] switches of players using group averages.

Table VII displays the average number of switches per player across games for our four
34Note that if players were to play the best PBE and the game happened to stop at a time such that𝑝∗1 is only

reached in the strategic treatment, we should observe exactly one switch per player in the strategic treatment
and none in the control treatment. Therefore, a higher number of switches in the strategic treatment is not
inconsistent with players’ playing the best PBE. However, the magnitude of the effect, which we report here,
cannot be accounted for by this explanation. While this effect would add tomaking switchingmore prevalent
in the strategic treatment, a substantially higher number of switches in the strategic treatment would provide
suggestive evidence that subjects may indeed have endeavored to take turns, as predicted by KRC’s MPEs.

35It is optimal for players to continue to play risky after observing a success until the game ends; in the
strategic treatment, it does not matter whether the success has been achieved by the player himself or his
partner, while, in the control treatment, only a player’s own successes are informative. Overall across both
treatments, there were 65 (110) successes in the groups of size 𝑛 = 2 (𝑛 = 3). Across all treatments and any 𝑛,
only 6 subjects did not continuously explore until the end of the game after observing a success that resolves
all uncertainty. Of these 6 players, 5 switched to safe for a few seconds and one subject reverted to playing
safe after continuously playing risky for 120 seconds following his own success.
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treatments.36 The incidence of switches in the strategic treatment is much higher than in
the control treatment for both 𝑛 = 2 and 𝑛 = 3 (both p-values of 0.0001).

Result 5. For both group sizes, the incidence of switches is higher in the strategic treatment.

In addition, we examine and test for the difference in timing when the first switch from
risky to safe in a given game occurred. For both group sizes, the first switch from risky to
safe in calendar time is realized statistically significantly earlier in the strategic treatment
(all p-values of 0.0001). As we have mentioned above, information accumulation is po-
tentially faster in the strategic treatment. On account of the conditionally independent
Poisson processes, the information acquired within a given unit of time is proportional to
the number of players currently playing risky. To account for the fact that the decrease
in beliefs may be up to 𝑛 times faster in the strategic treatment, we compare 𝑛 times the
calendar time of the first switch in the strategic treatment to the calendar time of the first
switch in the control treatment. For group size 𝑛 = 2 (𝑛 = 3), the former was 36.31 (57.13)
on average in the strategic treatment vs. 76.55 (76.14) in the control treatment. This differ-
ence is statistically significant for 𝑛 = 2 (𝑝-value of 0.0007) and 𝑛 = 3 (𝑝-value of 0.0330).
Thus, for both 𝑛we can conclude that, on average, the first switch in the strategic treatment
occurred at a statistically significantly more optimistic belief than in the control treatment.
This is further evidence that participants attempted to actively free-ride on the information
generated by their partner(s). KRC’s MPEs have the property that the first switch occurs
at a belief strictly higher than the single-agent cut-off 𝑝∗1 . Taken together with the much
higher frequency of cut-off play in the control treatment, this suggests that subjects’ behav-
ior may possibly be better predicted byMPE than by the best PBE.We explore this concept
in greater depth in the following subsection.

6.2 Groups of 𝑛 = 2 vs. 𝑛 = 3
As Figure 1 illustrates, behavior in the control treatment is remarkably similar across two-
and three-player groups, as subjects do not have the opportunity to free-ride on the in-
formation generated by others. Meanwhile, in the strategic treatment, the coordination
required by MPE play is decidedly more involved than that which underlies the best PBE.
This complexity increases with the number of players for the former, while it remains un-
changed for the latter. Indeed, recall that the latter implies cut-off behavior on the path
of play, while the former is characterized by role changes. Coordinating role changes is
inherently more difficult in three-player groups. Therefore, one might expect that MPE-
type behavior is more prevalent in groups of 𝑛 = 2 players than in groups of size 𝑛 = 3.
Moreover, the size of the social dilemma is more than 50% larger in groups of size 𝑛 = 3.
Possible indicators of more MPE-like behavior in the strategic treatment would be less
cut-off behavior, more switches and more single pioneers for the smaller group size 𝑛 = 2.

Recall that our difference-in-differences analysis of experimentation intensities across
belief regions and treatments (see Subsection 5.2) shows a statistically significantly larger
difference between the risky dominant and free-riding regions in the strategic treatment

36While we run our hypothesis test with the average incidence of switches, we rather report the average
number of switches in Table VII, as this may be easier to interpret. The number of switches is also statistically
significantly higher in the strategic treatment for both 𝑛, with 𝑝-values of 0.0001.
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only for groups of size 𝑛 = 2. Moreover, the observed overall average experimentation
intensity is furthest away from the MPE-prediction for groups of size 𝑛 = 3, being signifi-
cantly different from the observed value at the 10%-level (see Footnote 23). Our following
result provides additional evidence that the more sophisticated forms of coordination re-
quired by MPE seem to be more prevalent for 𝑛 = 2 than for 𝑛 = 3.

Result 6. The frequency of single pioneers is significantly higher in the strategic treatment for
𝑛 = 2 than for 𝑛 = 3. Furthermore, the incidence of switches is higher and cut-off behavior
is less frequent in the strategic treatment for 𝑛 = 2 than for 𝑛 = 3. However, the latter two
effects are not statistically significant.

The p-value is 0.0252 for the proportion of time with a single pioneer. It is 0.2237 and
0.5096 for the average incidence of switches per player, and the average frequency of cut-off
behavior, respectively. If we omitGames 5 and 6 (arguably outliers on account of their short
length and the very early success, respectively), the difference in cut-off behavior is highly
significant as well (𝑝-value of 0.0101).37 Thus, overall, our subjects are not behaving—or
aiming to behave—as in the best PBE. Generally, our subjects’ behavior seems qualitatively
to be better described by MPE play, though the evidence for this conclusion is stronger for
groups of size 𝑛 = 2 than for 𝑛 = 3.

6.3 Attention Paid To Partners’ Experimentation Efforts
As a robustness test, we would like to ensure that the differences in behavior and payoffs
between the strategic and control treatments, which we are observing, are indeed due to
the positive informational externality theory predicts. To do so, we study directly how
much heed subjects paid to the information provided by their partner(s). We employ eye-
tracking data obtained by two (three) Tobii-TX300 eye trackers with a sampling rate of 300
Hz. The relative frequency of fixations corresponds to the relative importance of an infor-
mation in the subject’s decision-making process (Jacob and Karn 2003, Poole, Ball, and
Phillips 2005). In our setting, eye fixations can thus provide information about the im-
portance subjects assigned to the different payoff streams, which revealed both a player’s
actions and payoffs. While the use of this technology imposed subject constraints in the
data-collection process, it allows us to gain additional insights into subjects’ cognitive pro-
cesses with the aim of better understanding subjects’ behavior in the strategic treatment
relative to the control treatment. If subjects were not making any use of the free infor-
mation provided by their partners, then no statistically significant difference in observed
attention should be detected. This in turn would invalidate any game-theoretical expla-
nation of observed differences in behavior or payoffs between the strategic and control
treatments, since theory predicts that the only source of strategic interaction in our game
is the positive externality that arises because the information players produce is a public
good.38 We define a subject’s fixation intensity as the total number of fixations on his own
payoff stream, divided by the total number of all fixations (i.e., both on his own and on his

37If we analyzed the number, rather than the incidence of switches, the difference would be significant at
the 10%-level (𝑝-value of 0.0771) for all six games, and even at the 1%-level for Games 1-4 only.

38Video recordings illustrating the use of the eye-tracking devices are available at the author’s website:
www.johanneshoelzemann.com. Heat maps spotlighting information search and attention behavior can be
found in Appendix A (Hoelzemann and Klein 2021).
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partner’s [partners’] payoff stream[s]) during a game before a breakthrough arrives or the
game ends.

Table VIII: Average Fixation Intensities

Strategic Treatment Control Treatment

Group Obs. Fixation Obs. Fixation
Size Intensity Intensity

𝑛 = 2 60 .614 [.087] 60 .865 [.090]
𝑛 = 3 60 .383 [.078] 60 .712 [.106]
Average [st. dev.] fixation intensity using group averages.

As Table VIII shows, the average fixation intensity is much lower in the strategic treat-
ment. This is highly statistically significant for both group sizes (both p-values are 0.0001
for 𝑛 = 2 and 𝑛 = 3). While a subject who is unsure about how to solve his decision prob-
lem might also be tempted to “copy” from his partner in the control treatment, the fact
that players focus on each other much more in the strategic treatment very much suggests
a strategic rationale for players’ behavior, in that they are trying to learn about the quality
of their own risky arms by observing their partners’ exploration efforts. These results fur-
thermore suggest that subjects do indeed understand the simple, non-strategic, nature of
the control treatment.

6.4 OLS Estimations
As a further robustness test and to complement the non-parametric analysis in Section 5
and key elements discussed so far in this section, we ran ordinary least-square regressions
with random effects controlling for learning effects. In particular, we regressed experimen-
tation intensity, payoffs, cut-off strategy, switches of action, and fixation intensity on the
treatment dummy Correlation, which is 0 for the control treatment and 1 for the strategic
treatment. Recall that subjects played the six games in randomorder and any order of these
games that was used for 𝑘 (𝑘 ∈ {1,⋯ , 10}) groups in the strategic treatment was replicated
for 𝑘 groups in the control treatment. In order to verify that subjects treated the games
they successively played as independent games rather than as parts of a larger super-game,
we define a weighted learning function {𝑔𝑜} = {1𝑜 } where 𝑜 (𝑜 ∈ {1,⋯ , 6}) corresponds to
the random order in which each subject was exposed to each game. All regressions control
for trends over time using this weighted learning function. The results do not qualitatively
change when we replace the learning function with a linear version such that {𝑔𝑜} = {𝑜}.
To account for the fact that behavior within groups of two (three) participants is not in-
dependent, we treat each group as our units of statistically independent observations and
cluster standard errors by group.

Table IX lists the results from this analysis where Panel A shows the results for two-
player groups and Panel B displays the results for 𝑛 = 3. We find a strong negative effect of
the correlation structure, our strategic treatment, on experimentation intensity across both
belief regions, cut-off strategy, and fixation intensity. By contrast, we find a strong positive
effect of the additional presence of one (two) perfectly positively correlated arm(s) on stage
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game payoffs and switches of action.39

Table IX: OLS Estimations with Random Effects of Experimentation Intensity, Payoffs,
Cut-off Strategy, Switches of Action, and Fixation Intensity.

Experimentation Intensity Payoffs Cut-off Switches of Fixation
ALL Risky Dom Free-Riding Strategy Action Intensity

Panel A: 𝑛 = 2
Intercept 0.883 0.973 0.812 983.861 0.873 0.827 0.851

(0.053) (0.051) (0.070) (60.227) (0.063) (0.296) (0.023)
Correlation −0.223 −0.191 −0.299 204.750 −0.542 2.275 −0.251

(.050) (.050) (0.066) (55.838) (0.058) (0.378) (0.024)
Learning -0.148 -0.118 -0.016 106.566 -0.089 -0.081 0.033

(0.119) (0.115) (0.141) (103.356) (0.103) (0.659) (0.035)
𝜎𝜖 0.217 0.242 0.254 1474.627 0.411 1.946 0.103
𝜎𝑢 0.117 0.111 0.150 0 0.073 0.543 0.071
N 240 200 148 240 240 240 240
(Between) R-squared 0.420 0.319 0.375 0.116 0.705 0.602 0.716

Panel B: 𝑛 = 3
Intercept 0.903 1.001 0.763 963.333 0.878 0.738 0.717

(0.058) (0.064) (0.082) (52.382) (0.082) (0.317) (0.030)
Correlation −0.300 −0.300 −0.282 439.056 −0.461 1.483 −0.330

(0.062) (0.090) (0.073) (44.900) (0.085) (0.438) (0.030)
Learning -0.145 -0.158 0.065 40.658 -0.203 0.089 -0.011

(0.114) (0.149) (0.126) 63.533 (0.147) (0.508) (0.049)
𝜎𝜖 0.253 0.216 0.292 1449.951 0.399 1.622 0.112
𝜎𝑢 0.126 0.205 0.177 0 0.182 0.918 0.103
N 360 300 223 360 360 360 360
(Between) R-squared 0.491 0.336 0.283 0.404 0.500 0.311 0.693

For all estimations, robust standard errors are clustered at the group level and shown in brackets.
The estimates for Intercept and Correlation are significant at the 1 percent level in all the reported instances;

Learning is never significant at the 10 percent level.

Thus, our OLS estimations with random effects confirm all of our previous, non-para-
metric, results.40 In particular, there is no evidence of super-game effects, as subjects’
behavior does not change in response to the number of games they previously played.41

39We do not report estimates of the proportion of time with a single pioneer as the interpretation of the
lonely pioneers is only sensible at the individual group-level.

40Our results remain qualitatively unchanged if we use our “continuous” cutoffmeasure (see p. 19) instead.
41We also ran our non-parametric analysis using only the last (first) games played by each group. While

this implies the loss of a large amount of data, and hence statistical power, our qualitative conclusions remain
unaltered, although a few of our effects are no longer statistically significant.

25



7 Conclusion
We have analyzed a problem of dynamic public-good provision, where the public good
in question is information about an uncertain state of the world. In particular, a group
of several agents was facing the same decision problem, in which the optimal course of
action depended on an unknown state of the world, which, in the strategic treatment, was
common to everyone in the group. Therefore, the information produced by one agent
benefited the other groupmember(s) aswell. This informational externality constituted the
only strategic link across players. Information, and hence agents’ contribution incentives,
evolved as the game progressed. We compare subjects’ behavior in this strategic treatment
to the behavior of subjects in the control treatment, where each agent’s individual state of
the world was iid, and there were therefore no strategic links across group members.

We have shown that experimentation intensities are lower in the strategic treatment.
In particular, this is the case in the free-riding belief region, which points to strategic free-
riding. Moreover, subjects seem to attempt to coordinate in rather elaborate ways, as ev-
idenced, inter alia, by the much lower incidence of cut-off behavior and the higher inci-
dence of lonely pioneers in the strategic setting. Overall, this leads us to reject the hypoth-
esis that subjects played according to the best PBE. Indeed, the best PBE would predict no
free-riding in the free-riding region, cut-off play and no lonely pioneers. While this does
of course not constitute conclusive evidence in favor of MPE, it bears noting that these
behaviors are fully in line with the qualitative predictions of MPE.

Why subjects should refrain from engaging in the simple cut-off behavior prescribed
by the welfare-optimal equilibrium seems somewhat of a puzzle. The control treatment
shows that subjects were not, in principle, averse to playing cut-off strategies. We conjec-
ture that, in the strategic setting, the idea of taking turns (Cason, Lau, and Mui 2013; Leo
2017), as evidenced by the greater prevalence of lonely pioneers and a greater number of
switches, was attractive to subjects. Turn-taking is a feature of any of KRC’s MPEs in this
setting. Vespa and Wilson (2015, 2019) had already documented a tendency of a substan-
tial fraction of subjects to adopt MPE behavior; in their setting, MPE play was simpler—in
ours, it is not. Our investigation shows that, even in a setting like ours, where from a the-
oretical perspective one equilibrium is welfare-optimal and prescribes particularly simple
behavior, making it an obvious candidate for a focal equilibrium, this equilibriummaywell
not describe subjects’ behavior accurately. Our findings may thus counsel caution when
supposing which, among a multitude of equilibria, may be considered focal by players. We
commend the analysis of other dynamic games with an a priori “obvious” candidate for
a focal equilibrium for future research. In particular, it would be interesting to analyze a
game in which the welfare-optimal equilibrium was both particularly simple in structure
and Markovian.

As a further robustness test, one could in principle show subjects the current updated
belief on their screens, in order to separate the task of belief updating from that of deter-
mining the cut-offs. We have decided against doing so here, as we were concerned about
nudging subjects toward certain behaviors, which would have made the interpretation of
our results more difficult. It might also be interesting to test whether the encouragement
effect can be shown in the laboratory for settings in which the theory would predict it to
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arise, such as, for instance, the Poisson setting with inconclusive breakthroughs à la Keller
and Rady (2010), or the Brownian-motion setting of Bolton and Harris (1999). It would
also be intriguing to try and test the impact of privately observed actions or payoffs in the
laboratory. We commend these questions for future research.
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