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Abstract

Motivated by the problem of organizational design, we study coordination in the network
minimum game: a version of the minimum-effort game where players are connected by
a directed network. We show experimentally that acyclic networks such as hierarchies are
most conducive to successful coordination. Introducing a single link to complete a network
cycle may drastically inhibit coordination. Further, acyclic networks enable resilient coor-
dination: initial coordination failure is often overcome (exacerbated) after repeated play in
acyclic (cyclic) networks.
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1 Introduction
Organizations generate coherent, intricate patterns of coordinated activity. This is no mean feat.
An extensive experimental literature documents that coordination failure is almost inevitable
in sufficiently large groups. These papers model coordination problems using the minimum-
effort game (Van Huyck, Battalio, and Beil 1990), where a group of players stand to benefit if
they successfully coordinate on high actions, but each player is incentivized to match the lowest
action in the group.

The classicminimum-effort game captures a stylized organizationwhere incentives are coarse
and untargeted: each individual is rewarded based on the entire group’s performance, and thus
is held responsible for coordinating with everyone else. In practice, the scope and complexity
of task and incentive interdependencies within most organizations is limited – by design. Pro-
duction may be organized so that workers on an assembly line coordinate amongst themselves
but operate almost independently of the rest of the organization. Incentives may be tailored so
that a team member is responsible only for completing his own assignments while the manager
is responsible for the team’s overall performance.

Suppose we represent the set of interdependencies in an organization’s task and incentive
design as a network across agents. Put loosely, if agent 2’s payoff depends on agent 1’s actions,
we draw a link from 1 → 2. Given a network representation of organizational structure, we
seek to understand how organization-wide coordination emerges from the ensemble of network
interactions.

To do so, we introduce the network minimum game, a generalization of the minimum-effort
game. In the network minimum game, players are linked by a directed network, and each player
is incentivized to match the lowest action amongst his direct links.

The classic minimum-effort game corresponds to the special case of a complete network. In
contrast, our framework allows for incomplete networks, thus capturing the notion of limited
within-organization interdependencies. Further, by considering directed networks, we allow
for asymmetric interdependencies between players: player 𝑖’s payoff may depend on player 𝑗’s
actions, but not vice versa. Such asymmetries in responsibility are common, especially in orga-
nizational hierarchies. An entry-level worker may be tasked with mechanically following proce-
dures and instructions, so that his payoff is independent of others’ actions. In contrast, a senior
manager may be penalized for coordination failures even when her subordinates are at fault.

𝑃1 𝑃2

𝑃3𝑃4

𝑃1 𝑃2

𝑃3𝑃4

Cyclic network Acyclic network

Figure 1: Cyclic vs. Acyclic Network (Examples)

Our experimental setting represents repeated interactions within long-lived organizations
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with persistent structure: participants play in fixed groups, with fixed network structure, for ten
rounds. The treatments vary two aspects of network structure: network cyclicity (the existence
of cycles of dependencies in the network; see Figure 1) and network density (the number of links
per player).

We find that network cycles inhibit coordination. Table 1 summarizes our key findings. On
acyclic networks of all densities, players coordinate on almost-maximal actions (the maximum
action being 7). Cyclic networks perform worse than acyclic networks. Dense cyclic networks
perform worst: they generate almost-minimal actions (the minimum action being 1). That is,
cycles matter, especially for dense networks. Indeed, the difference between the dense acyclic
and dense cyclic network in Table 1 is the addition of a single link which, by creating network
cycles, generates catastrophic effects on overall coordination.

Table 1: Mean Final-Round Action, by Network Structure

acyclic cyclic
sparse 6.52 4.90

[.81] [2.02]
dense 6.72 2.08

[.63] [1.33]

Mean [st. dev.] action for each network structure, averaged over groups of size 𝑛 = 6.
Action set = {1, 2,… , 7}.

Our experiment’s acyclic networks are hierarchical: they take the formof a chain-of-command
where higher-indexed participants depend on lower-indexed participants. This construction
captures the essence of an organizational hierarchy, where supervisors are held responsible for
their subordinates’ activities and each worker has a unique chain-of-command leading to the
CEO. Some papers study the efficiency of hierarchical structures from the perspective of orga-
nizational design (e.g., Sah and Stiglitz 1986, Radner 1993, Harris and Raviv 2014). Our results
highlight that hierarchies, being acyclic, are particularly effective at fostering coordination.1

What mechanisms underlie our results? We have in mind that dependency cycles create
feedback loops that allow ‘seeds’ of strategic uncertainty to circulate and amplify, potentially
leading to coordination failure: eventually, each player selects a low action simply because he
anticipates that the next player in the cycle may do the same, ad infinitum. In contrast, destruc-
tive feedback loops do not arise in acyclic networks, thus enabling successful coordination.

This logic may be starkly interpreted in terms of Nash equilibrium. For acyclic networks, the
unique Nash equilibrium is for all players to take a maximum action. Whereas, for our cyclic
networks, every common action level is a Nash equilibrium – that is, the strategic uncertainty
associated with network cycles translates to equilibriummultiplicity. Suchmultiplicity, however,
also means that Nash equilibrium is silent about why sparse cyclic networks coordinate more
successfully than dense cyclic networks. (Indeed, the set of pure-strategy Nash equilibria for
1Less commonly, some organizations are structured in matrix form, which is also acyclic. In a matrix organization,
a subordinate may have multiple superiors, and there may be multiple chains-of-command from each employee to
the top, but no “cycles of responsibility”. We view our findings as applying to matrices and other acyclic structures
as well.
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cyclic networks is independent of network density.) Nor does it speak to some of our other
experimental findings. We find, for instance, that in cyclic networks, the level of coordination is
independent of cycle length. We also find that in acyclic networks, participants who are higher
in the pecking order – that is, participants whose payoffs depend more on others’ actions – take
lower actions.

To address these experimental findings, and to enrich our intuitions about how network
structure amplifies or dampens strategic uncertainty, we analyze logit (quantal-response) equi-
libria of the network minimum game (in Appendix A). In logit equilibrium, seeds of strategic
uncertainty are introduced by assuming that each player inevitably makes small mistakes when
choosing actions (McKelvey and Palfrey 1995; Anderson, Goeree, and Holt 2001; Goeree, Holt,
and Palfrey 2016). Thismodeling device allows us to tractably capture the feedback-loopmecha-
nisms discussed above. Further, logit equilibrium produces sharp comparative static predictions
that match our experimental findings.

We also examine how participants learn to coordinate over time. We find that coordina-
tion is more resilient in acyclic networks. In initial rounds, play is noisy and average actions
are intermediate for both cyclic and acyclic networks. Participants in acyclic networks tend to
overcome such initial miscoordination: average actions increase towards the maximum level
over time. In contrast, in cyclic networks, initial miscoordination is exacerbated: average ac-
tions decrease over time. We interpret our results as being largely consistent with a notion of
“learning to coordinate” where participants gradually improve at predicting others’ actions and
at making optimal decisions. Viewed in this light, acyclic networks empower players to develop
and maintain coordinated outcomes.

2 Framework

2.1 Background: the (Classic) Minimum-Effort Game
The classic Minimum-Effort Game models coordination amongst an 𝑛-player group under a
“weakest-link” production technology where output is determined by the group’s worst per-
former. Each player 𝑃𝑖 in the group {𝑃1, ..., 𝑃𝑛} simultaneously chooses an action 𝑥𝑖 from a
compact action set𝑋 ⊂ ℝ, and receives the minimum group action less a private action cost:

𝜋𝑖 (𝑥1, ..., 𝑥𝑛) = min {𝑥1, ..., 𝑥𝑛} − 𝑐𝑥𝑖 with 𝑐 < 1.

In most existing experimental implementations, the action set 𝑋 is discrete: each participant
chooses an integer action between 1 and 7. We follow this convention in the laboratory, but
impose a continuous action set in our theoretical analysis (Appendix A).

With at least two (self-interested) players, any symmetric action profile (𝑥,… , 𝑥) is a Nash
equilibrium. These equilibria are Pareto-ranked, with higher-action equilibria being more ef-
ficient. The natural interpretation is that low-action equilibria represent coordination failure.

2Observations were aggregated across multiple experiments. Sources: Van Huyck, Battalio, and Beil (1990) for 𝑛 =
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Table 2: Mean Actions in Classic Minimum-Effort Game (Final Round)

𝑛 = 2 𝑛 = 3 𝑛 = 6
Action 6.39 3.63 1.45

[1.79] [2.34] [1.02]

Mean [st. dev.] action, averaged over groups.2

Action set = {1, 2, ..., 7}.

Table 2 aggregates existing experimental results to highlight one of the most consistent find-
ings about the classic minimum-effort game: coordination deteriorates dramatically with group
size, and failure is almost inevitable in groups with more than three players. Average actions
drop from 6.39 with 𝑛 = 2 to 1.45 with 𝑛 = 6.

2.2 The Network Minimum Game
Let’s augment the classic minimum game with a (connected) directed network g over the group
{𝑃1, ..., 𝑃𝑛}. If there is a link 𝑃𝑗 → 𝑃𝑖, then we say that 𝑃𝑖 depends on 𝑃𝑗. We require that players
always depend on themselves: 𝑃𝑖 → 𝑃𝑖 for all 𝑃𝑖. Each player 𝑃𝑖’s neighborhood 𝑆𝑖 is the subset
of players that 𝑃𝑖 depends on.

The network minimum game differs from the classic minimum game in just one respect:
each player 𝑃𝑖’s payoff depends only on actions of those in 𝑃𝑖’s neighborhood,

𝜋𝑖 (𝑥1, ..., 𝑥𝑛) = min {𝑥𝑗 ∶ 𝑗 ∈ 𝑆𝑖} − 𝑐𝑥𝑖 with 𝑐 < 1. (1)

Notice that the classic minimum-effort game is a special case of the network minimum game
where g is the complete network: 𝑃𝑖 → 𝑃𝑗 for all 𝑖, 𝑗 ∈ {1, ..., 𝑛}.

Some terminology: a network path is a sequence of players where each player depends on,
and is distinct from, his predecessor. A network cycle is a network path that starts and ends with
the same player. A network without network cycles is acyclic.

In any acyclic network, the unique Nash equilibrium is for everyone to play the maximum
action, 𝑥𝑖 ≡ max𝑋. Network cycles introduce equilibrium multiplicity: for any network cycle,
any common action 𝑥𝑖 ≡ 𝑥 ∈ 𝑋 is a Nash equilibrium. Taken together, these observations
hint at the central point of our paper: network cycles introduce strategic uncertainty, potentially
leading to coordination failure. However, this multiplicity also implies that Nash equilibrium is
silent about how coordination varies across different cyclic networks. Instead, we appeal to an
alternative solution concept.

In Appendix A, we analyze logit equilibria of the (one-shot) network minimum game. Logit
equilibrium introduces seeds of strategic uncertainty into the interactions between players. Each
player best-responds “noisily” – by playing a distribution over actions where higher-payoff ac-
tions are chosen (exponentially) more frequently – to the similarly noisy play of others. Such
noise captures the strategic uncertainty inherent in our coordination-game setting. Further, as

2; Knez and Camerer (1994) and Knez and Camerer (2000) for 𝑛 = 3; Knez and Camerer (1994) and Dufwenberg
and Gneezy (2005) for 𝑛 = 6.
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in Anderson, Goeree, andHolt (2001)’s logit-equilibrium analysis of the classic minimum-effort
game, the introduction of noise shrinks the set of equilibria relative to the Nash case, and thus
serves as an effective equilibrium-selection device. Consequently, logit equilibria produce in-
tuitive predictions about the circumstances under which coordination failure occurs. When
discussing the intuitions underlying our experimental results in Section 4, we will often refer
the interested reader to theoretical results in Appendix A.

3 Experimental Design

3.1 Network Treatments
In the experiment, groups of participants played a version of the networkminimum gamewhere
actions are integers between one and seven, i.e.,𝑋 = {1, 2, ..., 7}.

The experiment adopted a between-subject design: each participant in each session was as-
signed to a specific network position within a group of fixed size and network structure, and
each group played ten rounds of the network minimum game. Groups differed in size: 𝑛 ∈
{2, 3, 4, 6, 12}. Modulo size, network structure took one of four (= 2 × 2) forms, which differed
along two dimensions: density and cyclicity. Each treatment thus corresponded to some com-
bination of group size × network density × network cyclicity. This taxonomy is illustrated in
Figure 2 for groups of size 𝑛 = 6.
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𝑃6
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𝑃3
𝑃4

𝑃5

𝑃6
𝑃1

𝑃2

𝑃3
𝑃4

𝑃5

𝑃6

𝑃1
𝑃2

𝑃3
𝑃4

𝑃5

𝑃6

Acyclic Sparse Acyclic Dense Cyclic Sparse Cyclic Dense

Cyclic networks are constructed by adding a single (red) link to the corresponding acyclic networks.

Figure 2: Six-Player Networks

Some combinations of group size × network density × network cyclicity were not imple-
mented. Table 3 summarizes which, and how many, network treatments were run; Appendix D
illustrates each such treatment.

Consider our acyclic networks. Both the sparse and dense acyclic networks are hierarchical:
participant 𝑃𝑖 depends on participant 𝑃𝑗 only if 𝑖 ≥ 𝑗, so higher-indexed participants depend
(directly or indirectly) on lower indexed participants. The sparse acyclic network is minimally
connected, in the sense that removing any link will partition the group into two distinct com-
ponents. The dense acyclic network is maximally connected, in the sense that adding any link
will introduce a network cycle. So, our sparse and dense networks represent extremes in density
amongst the set of connected acyclic networks.
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Table 3: Experimental Design

acyclic cyclic
sparse dense sparse dense

𝑛 = 2 ✓[10]
𝑛 = 3 ✓[9] ✓[10]
𝑛 = 4 ✓[10] ✓[10]
𝑛 = 6 ✓[10] ✓[10] ✓[10] ✓[10]
𝑛 = 12 ✓[2]
✓[𝑚] = treatment was run; [𝑚] = number of groups.

Our cyclic networks are defined in relation to our acyclic networks. To create the sparse /
dense cyclic network of size 𝑛, we add a single link – chosen judiciously to complete a network
cycle – to the sparse / dense acyclic network of size 𝑛. Each cyclic network thus is ostensibly
identical to its acyclic counterpart, except for the single additional link.

3.2 Procedural Details
Experimental sessions ran from April – August 2017 at UNSW Sydney’s BizLab. Participants
were recruited from the university’s subject pool and administered via ORSEE (Greiner 2015);
the experiment was programmed in zTree (Fischbacher 2007). Overall, 421 participants partic-
ipated in 33 sessions plus a pilot study, with 12 to 30 participants per session. Each treatment
was played by ten groups of participants.3 Groups were fixed throughout.

Participants faced a version of the payoff function from Equation (1). Specifically,

𝜋𝑖(𝑥1, ..., 𝑥𝑛) = 6 + 3min{𝑥𝑗 ∶ 𝑗 ∈ 𝑆𝑖} − 2𝑥𝑖,

where payoffs were denominated in AUD. Payoff information was presented to participants in
the form of Table 4. Participants were paid their experimental earnings from one randomly-
selected round plus a show-up fee of AUD 5. No participant was allowed to participate in more
than one session. On average, each session lasted about 50 minutes and each participant earned
AUD 16.27.

The experimental design corresponds to a complete-information setting. At the start of the
experiment and at the start of each round, each participant was reminded about the network
structure and his position within the network. At the end of each round, each participant was
informed about every participant’s action within his group and every participant’s neighbor-
hood’s minimum action in that round. Each participant only participated in one session and
was only exposed to one network structure and one position within that network.

Participants received written instructions and were then shown a 5-minute video which ex-
3Therewere two exceptions to this ten-group-per-treatment rule: the cyclic sparse networkwith 𝑛 = 3 (nine groups)
and the acyclic dense network with 𝑛 = 12 (two groups). Each session consisted of multiple groups. In some
sessions, groups corresponding to different treatments were run in the same session; this was done to optimize the
use of participants given room-size constraints. Table 3 in the Appendix summarizes the experimental design.
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Table 4: Network Minimum Game Payoffs

Minimum Action in Neighborhood

Your Action 7 6 5 4 3 2 1

7 13.00 10.00 7.00 4.00 1.00 -2.00 -5.00
6 — 12.00 9.00 6.00 3.00 0.00 -3.00
5 — — 11.00 8.00 5.00 2.00 -1.00
4 — — — 10.00 7.00 4.00 1.00
3 — — — — 9.00 6.00 3.00
2 — — — — — 8.00 5.00
1 — — — — — — 7.00

plained each step of the experiment.4 Before the start of the experiment, participants had to
pass two on-screen comprehension tests, after which all participants in the session started the
experiment simultaneously.

4 Experimental Findings
This section studies how network density and network cyclicity affect coordination. Here, the
analysis is static: we report mean final-round actions for each treatment, averaged over groups.
In contrast, Section 5 will study dynamics: that is, how mean actions evolve over the ten rounds.
Throughout our analysis, the mean action for one group is treated as a single observation. The
approach controls for potential within-group correlations in a conservative fashion.

Acyclic Networks Our first experimental finding is that groups coordinate well in acyclic net-
works regardless of group size or network density.

Table 5: Mean Actions in Acyclic Networks (Final Round)

𝑛 = 3 𝑛 = 4 𝑛 = 6 𝑛 = 6
sparse sparse sparse dense

Action 6.52 6.70 6.52 6.72
[.53] [.50] [.81] [.63]

Mean [st. dev.] action, averaged over groups.
There were 10 observations (i.e., 10 groups) per treatment.

Table 5 lists average final-round actions for sparse and dense acyclic networks of various
group sizes. Participants achieved close to the maximum action in the final round of each treat-
ment. Across the various acyclic networks, the final-round average action ranged from 6.52 to
6.72 out of 7.5
4These written instructions are reproduced in the Online Appendix. The videos are available at
www.johanneshoelzemann.com.

5In every acyclic treatment, most participants played the maximum action: the number of such participants in the
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To highlight the point that high density does not hinder coordination in acyclic networks,
we collected data for two “super-dense” acyclic networks with 𝑛 = 12 (Figure 3). These networks
coordinated remarkably successfully. In the final round, all participants played the maximum
action 7.

𝑃1
𝑃2

𝑃3

𝑃4

𝑃5

𝑃6
𝑃7

𝑃8

𝑃9

𝑃10

𝑃11

𝑃12

Figure 3: Large Dense Acyclic Network

To sum up, neither group size nor network density made a substantial dent on coordination
in acyclic networks. Such insensitivity is in stark contrast with the fact that coordination dete-
riorates rapidly with group size (and thus with network density) in the classic minimum-effort
game (see Table 2). But the same insensitivity is consistent with the Nash equilibrium predic-
tion that participants in any acyclic network will coordinate well. Pushing this point further, we
find in Proposition A.1 of Appendix A that under logit equilibrium, participants in any acyclic
network will choose close-to-maximal actions as long as player’s mistakes are not too large. We
will elaborate on this point shortly, when we compare our experimental results for cyclic versus
acyclic networks.

Cyclic (vs. Acyclic) Networks Our second experimental finding is that coordination weakens
when cycles are introduced into a network, especially when the existing network is dense. Recall
that in our experimental design, the only difference between each acyclic network and its cyclic
counterpart is the addition of a single link.

Table 6 shows the mean final-round action in sparse and dense cyclic networks of various
group sizes. Sparse cyclic networks produce intermediate levels of coordination, but perform
substantially worse than sparse acyclic networks. Average final-round actions are significantly
lower in each size-𝑛 sparse cyclic network than in the corresponding size-𝑛 sparse acyclic net-
work: Wilcoxon rank-sum tests produce p-values of 0.0208, 0.0033, and 0.0571 for 𝑛 = 3, 4, and
6, respectively.

sparse 𝑛 = 3, 4, 6 and the dense 𝑛 = 6 treatments is 18 of 27, 32 of 40, 46 of 60, and 56 of 60, respectively.
Differences in average final-round actions between sparse acyclic treatments of different group sizes are not sig-
nificant: (two-sided) Wilcoxon rank-sum tests produce p-values of 𝑝34 = 0.3412, 𝑝36 = 0.4888, and 𝑝46 = 0.7980
(where 𝑝𝑛1𝑛2 is the p-value from comparing group sizes 𝑛1 vs. 𝑛2). The difference in average final actions between
the sparse vs. dense 𝑛 = 6 acyclic treatments is not significant either: 𝑝 = 0.4016.
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Table 6: Mean Actions in Cyclic Networks (Final Round)

𝑛 = 3 𝑛 = 4 𝑛 = 6 𝑛 = 6
sparse sparse sparse dense

Action 4.13 4.13 4.90 2.08
[2.22] [1.93] [2.02] [1.33]

Mean [st. dev.] action, averaged over groups
There were 10 observations (i.e., 10 groups) per treatment.

Comparing Tables 5 and 6, the difference in final-round actions between the dense acyclic
treatment and the dense cyclic treatment is particularly dramatic. With 𝑛 = 6, the mean final-
round action in the dense cyclic network is 2.08 [s.d. 1.33], compared to 6.72 [s.d. .63] in the
dense acyclic network (𝑝 < 0.0001). That is, the addition of a single link – to a dense network –
that completes network cycles has devastating effects on coordination.6

Relatedly, actions decrease with network density in cyclic networks. With 𝑛 = 6, the mean
final-round action in the sparse cyclic network is 4.90 [s.d. 2.02], versus 2.08 [s.d. 1.33] in the
dense cyclic network (𝑝 = 0.0035).

Figure 4: Empirical Distributions of Acyclic vs. Cyclic Networks with 𝑛 = 6

Moving beyond point estimates, Figure 4 shows the empirical distribution of action distribu-
tions by network treatment for 𝑛 = 6. Action distributions are significantly higher in stochastic
6We obtain similar – indeed, even more pronounced – differences across acyclic and cyclic treatments when we
consider each player’s neighbourhood’s minimum action rather than each player’s action.
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dominance in each acyclic treatment than in its cyclic counterpart: two-sample Kolmogorov-
Smirnov (KS) tests and two-sample Epps-Singleton (ES) tests both produce 𝑝 < 0.001 for final-
round actions.7

What forces underlie coordination failure in cyclic networks, andwhy are these forcesmuted
in acyclic networks? We have in mind that small seeds of strategic uncertainty are amplified by
strategic interactions in cyclic networks, but not in acyclic networks. We formalize this intuition
in Propositions A.1 andA.2 of Appendix A. Informally, consider the following tâtonnement pro-
cess over which ‘reverberant doubt’ unfolds. Suppose that players on a network cycle all (ini-
tially) play the maximum action. Now, inject a small ‘seed’ of strategic uncertainty by adding
noise to some player 𝑃𝑖’s action. In the subsequent tâtonnement process, each player who de-
pends on 𝑃𝑖 best-responds by lowering his action; in this way, the negative shock propagates
along network paths from 𝑃𝑖. In fact, this negative shock will circle back to 𝑖 along the network
cycle, inducing 𝑃𝑖 to further lower his action. In other words, the network cycle serves as a
feedback loop for the initial seed of strategic uncertainty. Indeed, players may be embedded in
multiple network cycles, in which case the feedback effect ismultiplied. In dense cyclic networks
where many players are embedded in many cycles, the feedback effect is sufficiently strong that
any small shock becomes self-reinforcing and eventually leads to coordination failure, where
everyone involved plays almost-minimal actions. In contrast, seeds of strategic uncertainty may
propagate across acyclic networks but are eventually dampened due to the absence of feedback
loops, and thus do not substantially damage coordination.

Cycle Length Our third experimental finding is that cycle length has little, if any, effect on
coordination. Consider the sparse cyclic networks. In a sparse cyclic network of size 𝑛 (Figure
5), there is a single cycle of length 𝑛 and every neighbourhood has size |𝑆𝑖| ≡ 2. To wit: we can
study how cycle length affects coordination, keeping density fixed at ℓ = 2, by comparing the
sparse cyclic networks with different group sizes.

𝑃1

𝑃2

𝑃1

𝑃2𝑃3

𝑃1 𝑃2

𝑃3𝑃4

𝑃1

𝑃2

𝑃3
𝑃4

𝑃5

𝑃6

Figure 5: Sparse Cyclic Networks

Table 7 shows average final-round actions in each of the sparse cyclic treatments. Average
final-round actions in the various sparse cyclic networks are not significantly different: testing
for differences between pairs of treatments, we get p-values of 𝑝23 = 0.7596, 𝑝24 = 0.6212,
𝑝26 = 0.7010, 𝑝34 = 0.9095, 𝑝36 = 0.4452, and 𝑝46 = 0.3620 (where 𝑝𝑛1𝑛2 is the p-value from
comparing group sizes 𝑛1 vs. 𝑛2).8

7Empirical distributions for networks with 𝑛 = 2, 3, 4 can be found in Figure B.2 of Appendix C.
8Two-sample Kolmogorov-Smirnov (two-sample Epps-Singleton) tests produce p-values of 𝑝23 = 0.976 (0.628),
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Table 7: Mean Actions in Sparse Cyclic Networks (Final Round)

𝑛 = 2 𝑛 = 3 𝑛 = 4 𝑛 = 6
Action 4.50 4.13 4.13 4.90

[2.60] [2.22] [1.93] [2.02]
Mean [st. dev.] action, averaged over groups.

There were 10 observations (i.e., 10 groups) per treatment.

This experimental result is consistent with Proposition A.2 in Appendix A, which implies
that logit equilibrium action distributions are independent of cycle length for sparse cyclic net-
works.9

These findings may shed some light on the mechanisms leading to coordination failure in
large groups in the classic minimum-effort game, which (as we recall) corresponds to the com-
plete network. Given a complete network, an increase in group size corresponds to both (i) an
increase in network density and (ii) the introduction of longer cycles into the network. What
role do each of these factors play in inducing coordination failure in the classic minimum-effort
game? Our finding that cycle length has little effect on coordination suggests that (ii) is not a
major factor; and thus that coordination failure in large groups in the classic minimum-effort
game is due to high network density.

Pecking Order Our fourth experimental finding is that participants that are “higher-up” in a
hierarchical network take lower actions. The sparse and dense acyclic networks of our experi-
mental design are implicitly hierarchical, in the sense that higher-indexed participants depend
on lower-indexed participants but not vice versa (see Appendix D): to wit, higher-indexed play-
ers are assigned greater responsibility for coordination and thus are “higher-ups” in the implied
hierarchy.

Table 8 shows average final-round actions for each treatment by participant position. For
each acyclic treatment, average actions generally decreased with participant position. The dif-
ferences across participant positions are relatively small – on average, the highest-indexed par-
ticipants in each acyclic treatment played higher actions than the average participant, at any
position, in each corresponding cyclic treatment. But the pattern of decreasing actions is statis-
tically significant: a battery of Wilcoxon rank-sum tests as well as directional Jonckheere tests
yield p-values of 0.0954, 0.0702, 0.0328, and 0.2691 for sparse 𝑛 = 3, 4, 6 and dense 𝑛 = 6, respec-
tively.10 In contrast, we did not discern any corresponding pattern for cyclic networks (p-values
of 0.7118, 0.2758, 0.4648, and 0.1458 for sparse 𝑛 = 3, 4, 6 and dense 𝑛 = 6, respectively.).

Intuitively, in acyclic networks, higher-indexed players find it more costly to take high ac-
tions. They do so because the players in their neighbourhood, being themselves relatively high-

𝑝24 = 0.660 (0.528), 𝑝26 = 0.660 (0.277), 𝑝34 = 0.660 (0.842), 𝑝36 = 0.976 (0.771), and 𝑝46 = 0.294 (0.957) for
final-round actions for networks with 𝑛 = 2, 3, 4 and 𝑛 = 6, respectively.

9More generally, action distributions are independent of cycle length for networks where all participants have the
same neighbourhood size ℓ. Sparse cyclic networks correspond to the special case ℓ = 2.

10The p-values of the Jonckheere test are reported. For dense acyclic 𝑛 = 6, the Jonckheere test yields 𝑝 ≤ 0.0426
for all periods except the final round.
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Table 8: Mean Actions by Network Position (Final Round)

Network Structure 𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 𝑃6
acyclic 𝑛 = 3 sparse 6.78 6.56 6.22

[.44] [.73] [.97]
𝑛 = 4 sparse 6.90 6.70 6.90 6.30

[.32] [.67] [.32] [1.06]
𝑛 = 6 sparse 6.80 6.80 6.80 6.40 6.30 6.00

[.63] [.42] [.42] [1.26] [1.16] [1.41]
𝑛 = 6 dense 7.00 6.90 6.40 7.00 6.50 6.50

[0] [.32] [1.90] [0] [1.58] [1.58]

cyclic 𝑛 = 3 sparse 3.80 4.20 4.40
[2.35] [2.35] [2.22]

𝑛 = 4 sparse 4.50 3.90 4.30 3.80
[2.01] [2.18] [2.11] [2.10]

𝑛 = 6 sparse 4.90 5.40 4.60 4.30 4.90 5.30
[2.38] [2.17] [2.50] [2.31] [1.97] [2.16]

𝑛 = 6 dense 1.90 2.80 2.60 1.80 1.80 1.60
[1.73] [1.81] [1.84] [1.03] [1.14] [1.07]

Mean [st. dev.] action. Refer to Appendix D for network position of each 𝑃𝑖.

indexed, play lower actions than the players in the neighbourhood of lower-indexed players.
Further, in the case of dense acyclic networks, higher-indexed players have larger neighbour-
hoods than lower-indexed players, and thus face a greater risk of a low action somewhere in
their neighbourhood. In broader terms: within a hierarchy, higher-ups face greater responsibil-
ity for coordination, which induces them to take lower actions.11 We formalize these points in
Proposition A.3 of Appendix A.

Additional Tests We conduct two robustness tests on this section’s results. Our first test ex-
cludes participant 𝑃1 from the analysis of acyclic networks. Unlike the other participants, 𝑃1
in acyclic networks has an empty neighbourhood, so faces no strategic uncertainty – thus their
dominant strategy is always to play the maximum action, 𝑥𝑖,𝑡 = 7. Excluding 𝑃1 from the anal-
ysis of acyclic networks thus serves, in a sense, to “level the playing field” between cyclic and
acyclic networks. Table B.4 reports mean actions for acyclic networks without 𝑃1, and Table B.5
tests for differences between cyclic and acyclic treatments after excluding𝑃1. Our results remain
qualitatively unchanged.

Our second test is to consider, instead of themean action, themeanneighbourhood-minimum
action; i.e., the minimum action in each participant’s neighbourhood, averaged over partici-
pants. Each participant’s neighbourhood-minimum action captures the extent to which coordi-
nation failure affects the participant. Table C.4 compares cyclic versus acyclic treatments, and
shows that the differences in suchmean neighbourhood-minimum actions are, if anything, even
11Practically speaking, a number of countervailing factors that are absent from our model may mitigate or even re-
verse this effect. For example, organizations may assign more highly-motivated personnel to higher-up positions,
and offer them stronger incentives, to ensure that they take high actions.
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more pronounced than the differences in mean actions.

5 Experimental Findings: Dynamics
Section 4’s analysis was static: it focused on final-round actions. Complementarily, Appendix
A studies logit equilibria of the one-shot minimum effort game. In this section, we step away
from the static setting and discuss how coordination evolved over the ten rounds of play in our
experiment.

Coordination Levels Table 9 shows average action choice by treatment, for round 1; rounds 1–5;
rounds 6–10; and round 10.12 A clear pattern emerges: actions increase over time (culminating
in relatively high actions) in acyclic networks, but decrease over time (culminating in relatively
low actions) in cyclic networks.13

Table 9: Time Trends in Mean Actions – Acyclic vs. Cyclic Networks

𝑛 = 3 sparse 𝑛 = 4 sparse 𝑛 = 6 sparse 𝑛 = 6 dense
acyclic cyclic acyclic cyclic acyclic cyclic acyclic cyclic

𝐴𝑐𝑡𝑖𝑜𝑛1 5.81 4.47 5.80 4.90 5.52 4.90 5.45 4.23
[.44] [1.33] [.73] [.77] [.80] [.62] [.53] [.52]

𝐴𝑐𝑡𝑖𝑜𝑛1−5 5.99 4.43 6.18 5.08 5.92 5.11 5.70 3.32
[.91] [1.68] [.68] [.98] [.89] [.98] [.88] [1.23]

𝐴𝑐𝑡𝑖𝑜𝑛6−10 6.41 3.98 6.45 4.56 6.43 5.14 6.52 2.29
[.88] [2.05] [.63] [1.66] [.85] [1.64] [.98] [1.23]

𝐴𝑐𝑡𝑖𝑜𝑛10 6.52 4.13 6.70 4.13 6.52 4.90 6.72 2.08
[.53] [2.22] [.50] [1.93] [.81] [2.02] [.63] [1.33]

Mean [st. dev.] action, averaged across groups.

Figure 6 paints a richer picture – showing means and 25th to 75th percentiles of action dis-
tributions round-by-round.14 In the acyclic networks, actions generally increased over time.
In contrast, in cyclic networks, action distributions decrease over time. This is especially so in
dense networks.15

12Tables B.1 and B.2 report statistical tests for differences between cyclic and acyclic treatments. Further, Table 8
omits the cyclic dense 𝑛 = 2 and acyclic dense 𝑛 = 12 treatments; these are relegated to Table B.3.

13These trends are statistically significant. For acyclic networks, Jonckheere tests for ascending order produce 𝑝-
values of 0.0008, 0.0007, 0.0001, and 0.0001 for sparse 𝑛 = 3, 4, 6 and dense 6, respectively. In contrast, testing
for descending order in cyclic networks yields p-values of 0.1288, 0.0554, 0.9877, and 0.0001 for sparse 𝑛 = 3, 4, 6
and dense 𝑛 = 6, respectively.

14A more detailed figure (B.1) can be found in Appendix C, where means and 25th to 75th percentiles of action
distributions round-by-round and by participant position are shown.

15As Figure B.1 shows, in the acyclic networks, actions at each position generally increased over time, especially
“higher-up” (higher-indexed) participants. Further, consistent with the patterns recorded in Table 8, higher-
indexed participants play lower actions than lower-indexed participants. In contrast, in cyclic networks, action
distributions at each position generally decrease over time, and there is no clear trend across positions in action
distributions.
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Mean actions averaged across treatment are displayed on the vertical axis and rounds are depicted on the
horizontal axis. The 25𝑡ℎ-75𝑡ℎ percentiles of the empirical distributions are highlighted in red. The first (second)

column from the left illustrates sparse networks of size 𝑛 = 3 (4). The two columns on the center-right show
networks of size 𝑛 = 6, differing in density with sparse and dense. The top (bottom) row always shows acyclic

(cyclic) networks.

Figure 6: Evolution of Mean Actions in Acyclic & Cyclic Networks

Overall, these time trends suggest that participantsmay be playing adaptively, adjusting their
actions over time in response to recent play. Next, we consider whether such adaptive play re-
duces the uncertainty that participants face.

Learning We provide suggestive evidence that participants in both cyclic and acyclic networks
learn to coordinate over time, in the sense that they improve their predictions of others’ actions.
Note that a participant 𝑃𝑖 who perfectly anticipates the play of other group members should
optimally match the minimum action elsewhere in his neighbourhood by choosing period-𝑡
action

𝑥∗𝑖,𝑡 =
{
{
{

min{𝑥𝑗,𝑡 ∶ 𝑃𝑗 ∈ 𝑆𝑖 ⧵ 𝑃𝑖} if |𝑆𝑖 ⧵ 𝑃𝑖| ≥ 1,
7 if |𝑆𝑖 ⧵ 𝑃𝑖| = 0.

Accordingly, call the difference between the participant 𝑃𝑖’s optimal action and realized action,
|𝑥𝑖,𝑡 − 𝑥∗𝑖,𝑡|, the participant’s prediction error.

Table 10 shows time trends in average prediction errors by treatment.16 Twopatterns emerge.
First, prediction errors are generally substantially larger in cyclic treatments than in the cor-

responding acyclic treatments.17 Using two-sided Wilcoxon rank-sum tests to compare predic-
16In acyclic networks, participant 𝑃1 has a particularly easy prediction problem: 𝑥∗1,𝑡 = 7. We obtain similar results
if we drop participant 𝑃1 from all (acyclic and cyclic) treatments.

17We can further disaggregate mean prediction errors by participant position. Table B.6 lists prediction error by
participant position, averaged over all ten rounds. As with Table 10, prediction errors are generally larger in cyclic
networks than in the corresponding acyclic networks and at the corresponding network positions. Analogous to
our discussion of Table 6, we find in acyclic networks that prediction errors generally increase as we move higher
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tion errors between acyclic and cyclic treatments – where each observation is the average predic-
tion error in one treatment over a specific time range – we find that, for most network structures
and most time ranges, prediction error is significantly higher in a given cyclic treatment than
the corresponding acyclic treatment.18

Table 10: Time Trends in Prediction Errors

𝑛 = 3 sparse 𝑛 = 4 sparse 𝑛 = 6 sparse 𝑛 = 6 dense
acyclic cyclic acyclic cyclic acyclic cyclic acyclic cyclic

Error1 1.44 2.07 1.15 1.90 1.28 1.77 1.90 2.70
[.87] [1.19] [.72] [.57] [.51] [.47] [.76] [.68]

Error1−5 1.02 1.31 .80 1.70 .96 1.53 1.34 1.78
[.84] [1.10] [.68] [.85] [.59] [.62] [.91] [1.03]

Error6−10 .44 .72 .66 1.16 .41 1.09 .41 .77
[.51] [.83] [.87] [.92] [.62] [.88] [.85] [.74]

Error10 .41 .40 .28 .90 .23 .83 .52 .43
[.33] [.84] [.55] [.91] [.35] [.74] [1.28] [.48]

Mean [st. dev.] prediction error, averaged across groups. In the 𝑛 = 6 dense acyclic network, eliminating a single
outlier reduces final-round mean prediction error to 0.13 [0.39].

Second, prediction error decreases over time in both cyclic and acyclic networks: the av-
erage prediction error over the last five rounds is lower than over the first five rounds in every
treatment.19 For acyclic networks, such improvements in prediction go hand-in-hand with im-
provements in actions, in the sense that actions increase over time (Table 8) – but not for cyclic
networks, where actions decrease over time.

We prefer to interpret prediction error as arising from a combination of strategic uncer-
tainty and noisy decision-making: participants make smaller prediction errors when they face
less strategic uncertainty about actions in their neighbourhood, and when they understand bet-
ter how to make optimal choices given others’ actions. That is, our experimental findings from
Table 10 suggest that over repeated play, participants improve their decision-making and strate-
gic uncertainty diminishes. In this context, it is not surprising that our results from Section 4 –
which focus on final-round play – are consistent with the predictions of low-𝜇 logit equilibrium
(Appendix A), which posits that agents optimize with a small amount of noise.

up the hierarchy (i.e., as participant index increases).
18See Table B.7 for details. We find that the differences between acyclic and cyclic treatments are statistically sig-
nificant for the sparse 𝑛 = 4 and 𝑛 = 6. For the dense 𝑛 = 6 treatments, the differences are statistically significant
for all time ranges – except that, in the final round, the acyclic treatment has a higher mean prediction error than
the cyclic treatment (due to a single outlier in the acyclic treatment). For the sparse 𝑛 = 3 treatments, differences
for some time ranges for the sparse 𝑛 = 3 treatment are not significant.

19Specifically, Jonckheere tests for descending order produce 𝑝-values of 0.0001 (0.0001), 0.0022 (0.0003), 0.0001
(0.0006), and 0.0001 (0.0001) for sparse 𝑛 = 3, 4, 6 and dense 𝑛 = 6 acyclic (cyclic) networks, respectively.
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6 Discussion

Related Literature

Our paper contributes to the experimental literature on coordination games on networks.20 In
particular, a number of papers consider coordination games on fixed undirected networks and
study how network characteristics such as clustering and path length affect coordination. Cassar
(2007) finds that small-world networks coordinatemore successfully than local networks, which
have long path lengths relative to group size, or random networks. Keser, Ehrhart, and Bern-
inghaus (1998) find that “circle” networks coordinate more successfully than small complete
networks; Berninghaus, Ehrhart, and Keser (2002) extend this analysis to consider “lattice” net-
works. Charness, Feri, Meléndez-Jiménez, and Sutter (2014) consider a class of network games,
including some coordination games; in these coordination games, they find that networks with
more clustering tend to coordinate more successfully. Our paper differ from these papers by
focusing on directed rather than undirected networks. Indeed, our main results speak to how
acyclic directed networks are very effective at fostering coordination because they lack depen-
dency cycles (and the attendant strategic uncertainty). In contrast, in the network coordina-
tion papers cited above, nonempty undirected networks always contain dependency cycles (any
undirected link between a pair of players creates a dependency cycle where each player depends
on the other), and thus do not speak to the consequences of acyclicity.

Riedl, Rohde, and Strobel (2016) introduce endogenous (undirected) network formation to
the minimum-effort game. In each round, participants choose who they are willing to connect
with. Efficient coordination emerges in this setting: participants are motivated to take high
actions by the threat of exclusion by others. In comparison, our model with fixed networks
captures settings where network structure is formal or ossified and difficult to change; this is the
case, for example, in large and / or bureaucratic organizations.

More generally, a large body of work studies how various interventions may help to over-
come coordination failure in theminimum-effort game.21 One broadly successful approach aug-
ments standard coordination games with pre-play communication. Cooper, DeJong, Forsythe,
and Ross (1992), Charness (2000), and Blume and Ortmann (2007) demonstrate that pre-play
cheap-talk communication significantly improves coordination. Relatedly, Van Huyck, Gillette,
and Battalio (1992), Brandts and MacLeod (1995), and Weber, Camerer, Rottenstreich, and
Knez (2001)model leadership by allowing one participant to send a pre-play cheap-talkmessage,
20Choi, Gallo, and Kariv (2016) provide a comprehensive overview of the broader literature on network experi-
ments. In recent work, Calford and Chakraborty (2020, 2021) analyze a network dilemma of voluntary and costly
public good provision with payoff externalities embedded in a network formation game; as well as higher-order
beliefs in a sequential social dilemma on a network. Gallo and Yan (2015) implement a network game in strate-
gic complements with a unique (but inefficient) Nash equilibrium, and shows that participants can successfully
cooperate to improve on the inefficient equilibrium – but only for simple, symmetric network structures.

21For an overview of recent advances in experimental coordination games, see Cooper and Weber (2020). While
network structures are not discussed, other aspects such as salience, incentives, communication, leadership, group
membership and identity, as well asmarkets are discussed. In addition, Crawford (2019) also offers a recent review
of selected work in experimental game theory with a focus, among other aspects, on establishing andmaintaining
coordination and cooperation in human relationships.
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and find that such recommendations can be effective at fostering coordination.22 Avoyan and
Ramos (2020) consider pre-play communication that is partially binding, and show that such
partial commitment improves coordination over the case of cheap talk. Weber and Camerer
(2003) run experimental games where groups of participants have to develop a common lan-
guage for pre-play communication in a coordination game with a rich set of actions, and show
that coordination may fail following group mergers due to lack of a common language.

Another set of papers considers how dynamic aspects of the coordination-game setting may
be manipulated to improve coordination. Weber (2005, 2006) shows that successful coordina-
tion can be “built” in minimum-effort games through gradual organizational growth – by start-
ing with small groups of 𝑛 = 2, then sequentially introducing additional group members who
observe the entire history of play. In a similar spirit, Brandts and Cooper (2006) show that coor-
dination failure in theminimum-effort game can be overcome by increasing the payoff from suc-
cessful coordination, and that such coordination persists even if coordination payoffs are sub-
sequently lowered.23 Weber, Camerer, and Knez (2004) study a version of the minimum-effort
game where players move sequentially, but without observing the choices of preceding players.
Although such ‘virtual observability’ has no impact on the information and payoff structures, it
improves coordination moderately.

Chen and Chen (2011) consider the effect of social identity on coordination. They induce a
sense of group identity amongst experimental subjects with some cleverly-designed treatments,
and find that a common identity amongst a group substantially increases coordination in the
minimum-effort game.

Relative to this body of work, our paper provides suggestive evidence that network design
– specifically, the implementation of acyclic network structures – can be at least as effective
as other devices and interventions such as communication, incentives, controlled growth, and
social identity. As a quick comparison, the gradual growth treatment of Weber (2006) induced
and sustained successful coordination (median action of 7) in two of nine groups of size 𝑛 = 12;
in Blume and Ortmann (2007), with the addition of pre-play cheap-talk messages, groups of
size 𝑛 = 9 play (on average) actions of around 6 out of 7. In comparison, in our paper, the dense
acyclic network treatment eventually induced and sustained full coordination at the maximum
level of 7 out of 7 in two of two 𝑛 = 12 groups.

Concluding Remarks
This paper argues that introducing cycles of interdependencies into an organization’s designmay
trigger coordination failure. In this sense, the network minimum game provides a perspective
that highlights the downsides of interdependencies within organizations; indeed, Lemma A.2
states that performance decreases monotonically whenever interdependencies are introduced.
22A bit further afield, Hyndman, Terracol, and Vaksmann (2009) study two-player repeated coordination games
and show that players may “lead by example” – play the payoff-dominant action in order to teach the other player
to follow suit in subsequent periods, and show that participants do indeed attempt tomanipulate their opponent’s
actions to induce efficient coordination.

23However, Hamman, Rick, and Weber (2007) show that a temporary all-or-nothing incentive scheme that specif-
ically targets the most efficient equilibrium fails to induce persistently successful coordination.

18



This stark result arises because the network minimum game framework essentially assumes that
interdependencies produce no benefits for organizations. While this assumption is clearly unre-
alistic, we prefer not to take a stand on how tomodel such benefits (see, e.g., Becker andMurphy
1992 and Dessein and Santos 2006 for some options). Instead, we show that the disadvantages
of additional interdependencies may be mitigated by avoiding network cycles. In other words,
if interdependencies are necessary, an acyclic structure is preferable to a cyclic structure.
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A Appendix: Logit Equilibria
To guide Section 4’s discussion of our experimental findings, we analyze logit equilibria of the
one-shot network minimum game. As Anderson, Goeree, and Holt (2001) do for the classic
minimum-effort game, let’s consider a version of the network minimum game where the action
set is continuous rather than discrete. Specifically, suppose that each player 𝑃𝑖 chooses an action
𝑥𝑖 from a bounded interval [𝑥, 𝑥]; we normalize this interval to [0, 1].

Logit equilibria are a special case of quantal-response equilibriawith exponentially-distributed
noise (McKelvey and Palfrey 1995; Goeree, Holt, and Palfrey 2016).24 Consider a profile 𝐹(𝑥) =
{𝐹1(𝑥),… , 𝐹𝑛(𝑥)} of distributions over action intervals [0, 1]. Suppose player 𝑃𝑖 takes action 𝑥,
and the other players’ actions are distributed as 𝐹−𝑖. Recall that each 𝑃𝑖’s payoff function takes
the form (1). We can calculate player 𝑃𝑖’s expected payoff from taking action 𝑥 to be

𝔼[𝜋𝑖(𝑥; 𝐹)] = ∫
𝑥

0
∏
𝑗∈𝑆𝑖⧵𝑃𝑖
(1 − 𝐹𝑗(𝑦))𝑑𝑦 − 𝑐𝑥.

(Here, we have abused the notation for 𝜋𝑖 to highlight dependence of the player’s payoff on the
profile 𝐹 of action distributions.)

Logit equilibrium asserts that players optimize noisily, in the sense that higher-expected-
payoff actions are (exponentially) more likely to be played. Specifically, assume that given an
action distribution𝐹, each player𝑃𝑖 plays a logit response: an distribution𝐿𝑖(𝑥; 𝐹) over the action
interval [0, 1] with density

𝑙𝑖(𝑥; 𝐹) =
exp {𝔼[𝜋𝑖(𝑥; 𝐹−𝑖)]/𝜇}
∫10 exp {𝔼[𝜋𝑖(𝑦; 𝐹−𝑖)]/𝜇} 𝑑𝑦

. (A.1)

The parameter 𝜇 > 0 captures the exogenous noisiness of play; higher 𝜇 corresponds to more
noise. For instance, the action distribution (A.1) corresponds to (i) a perfectly-targeted best-
response function at the limit 𝜇 → 0, versus (ii) a uniform distribution at the limit 𝜇 → ∞.
Importantly, the logit response accounts for the noisiness of others’ play – in the sense that it
noisily optimizes given others’ noisy optimizations – and thus incorporates strategic uncertainty
in a natural way. A logit equilibrium is simply a fixed point of the logit-response correspondence,
i.e., a profile 𝐹 of distributions such that 𝐹 ≡ 𝐿(⋅; 𝐹).

The following lemmas make preliminary observations about logit equilibria in the network
minimum game. Players’ logit responses are strategic complements in the network minimum
game. Such complementarity then implies that extremal logit equilibria exist.25 Some notation:
we write 𝐺 ⪰ 𝐻, and say 𝐺 dominates𝐻, iff 𝐺𝑖(𝑥) ≤ 𝐻𝑖(𝑥) for all 𝑥 ∈ [0, 1] and all 𝑖 ∈ {1, ..., 𝑛}
24For econometric applications of quantal-response equilibrium and its empirical content, see Haile, Hortacsu, and
Kosenok (2008) as well as Hoelzemann, Webb, and Xie (2023).

25Anderson, Goeree, and Holt (2002) provide a general proof that logit equilibria exist for games where payoffs
are continuous in actions. Anderson, Goeree, and Holt (2001) demonstrate equilibrium existence for continuous
potential games with bounded actions, such as the classic minimum-effort game. Lemma A.1b provides a slightly
stronger result, albeit for our specific setting: it exploits the monotonicity of the logit best-response to construct
a smallest, and a largest, equilibrium.
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(i.e., 𝐺𝑖 first-order stochastically dominates𝐻𝑖 for all 𝑖). Further, we write 𝐺 ≻ 𝐻 if 𝐺 ⪰ 𝐻 and
𝐺 ≠ 𝐻.

Lemma A.1a. If 𝐹 ≻ 𝐺, then 𝐿(⋅, 𝐹) ≻ 𝐿(⋅, 𝐺).

Proof. Pick any 𝑥, 𝑦 ∈ [0, 1] and 𝐹, 𝐺 such that 𝑥 > 𝑦 and 𝐹 ≻ 𝐺. Then

𝑙𝑖(𝑥; 𝐹)
𝑙𝑖(𝑦; 𝐹)
= exp (𝜋𝑖(𝑥)/𝜇)

exp (𝜋𝑖(𝑦)/𝜇)
= exp
{
{
{

−𝑐(𝑥 − 𝑦) + ∫𝑥𝑦 ∏𝑗∈𝑆𝑖⧵𝑃𝑖(1 − 𝐹𝑗(𝑠))𝑑𝑠
𝜇

}
}
}
< 𝑙𝑖(𝑥; 𝐺)𝑙𝑖(𝑦; 𝐺)

.

This implies that 𝐿𝑖(𝑥; 𝐹) and 𝐿𝑖(𝑥; 𝐺) have the the monotone likelihood ratio property in 𝑥.
Thus if 𝐹 increases, then 𝐿𝑖(𝑥; 𝐹) decreases (i.e., player 𝑃𝑖 increases his action in the sense of
first-order stochastic dominance). ■

Lemma A.1b. There exist smallest and largest logit equilibria of the network minimum game.

Proof. We demonstrate existence of a smallest equilibrium; the case of the largest equilibrium
proceeds similarly. Consider the sequence of distribution profiles {𝐹0, 𝐹1, 𝐹2, ...} where 𝐹𝑘+1 =
𝐿(𝐹𝑘) and 𝐹0 = (1, ..., 1), which corresponds to all players playing 𝑥 = 0. By Lemma A.1a, this
sequence of distributions is decreasing in dominance. By dominated convergence, 𝐿(𝐹∞) =
𝐹∞; thus, 𝐹∞ constitutes a logit equilibrium. Furthermore, we claim that 𝐹∞ is the smallest
equilibrium. For any equilibrium 𝐺, note that

𝐺𝑘 ⪰ 𝐹𝑘 and
lim
𝑘→∞
𝐺𝑘 ⪰ lim
𝑘→∞
𝐹𝑘

where 𝐺𝑘+1 = 𝐿(𝐺𝑘), 𝐺0 = 𝐺, and 𝐹0 = (1, ..., 1); in other words, 𝐺 ⪰ 𝐹∞. ■

Another useful observation is that logit equilibrium actions decrease as links are added to
the network. Let 𝐺 and 𝐺 be the smallest and largest equilibria under network g. Write 𝑔𝑖𝑗 = 1
if there is a link 𝑃𝑗 → 𝑃𝑖, and 𝑔𝑖𝑗 = 0 otherwise. Further, write g ≥ h if 𝑔𝑖𝑗 ≥ ℎ𝑖𝑗 for all
𝑖, 𝑗 ∈ {1, ..., 𝑛}, with strict inequality if 𝑔𝑖𝑗 > ℎ𝑖𝑗 for some 𝑖, 𝑗 ∈ {1, ..., 𝑛}.

Lemma A.2. If g > h, then 𝐺 ≺ 𝐻 and 𝐺 ≺ 𝐻.

Proof. Denote 𝐿(𝑥, 𝐹, g) as the vector of logit responses to an action distribution 𝐹, given net-
work g. Correspondingly, denote 𝐿𝑖(𝑥, 𝐹, 𝑆𝑖) as player 𝑃𝑖’s logit response to action distribution
𝐹 given his neighborhood 𝑆𝑖. Notice that shrinking 𝑃𝑖’s neighborhood from 𝑆𝑖 to ̂𝑆𝑖 ⊂ 𝑆𝑖 is
tantamount to increasing the actions of all players in 𝑆𝑖 ⧵ ̂𝑆𝑖 to the maximum level 1: that is,
𝐿𝑖(𝑥, 𝐹, ̂𝑆𝑖) = 𝐿𝑖(𝑥, �̂�, 𝑆𝑖), where

�̂�𝑗 =
{
{
{

𝐹𝑗 ∶ 𝑃𝑗 ∈ ̂𝑆𝑖
0 for all 𝑥 < 1 ∶ 𝑃𝑗 ∈ 𝑆𝑖 ⧵ ̂𝑆𝑖

.
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From Lemma A.1a, 𝐿𝑖(𝑥, �̂�, 𝑆𝑖) ≻ 𝐿𝑖(𝑥, 𝐹, 𝑆𝑖). So, 𝐿𝑖(𝑥, 𝐹, 𝑆𝑖) decreases in dominance as 𝑆𝑖 in-
creases. It follows that 𝐿(𝑥, 𝐹, g) decreases in dominance as g increases. By our construction of
the smallest and largest equilibria from Lemma A.1b, the result follows. ■

In words, as directed links are added to the network g, coordination deteriorates in the sense
that logit equilibrium actions decrease – directly for the linked-from player, and indirectly for
other players in the network. Intuitively, a new dependency for player 𝑃𝑖 lowers the (distri-
bution of the) minimum action in 𝑃𝑖’s neighbourhood, and thus induces 𝑃𝑖 to lower his logit
response. This negative shock may spread beyond 𝑃𝑖: by lowering his action, 𝑃𝑖 induces players
who depend on 𝑃𝑖 to lower their responses as well.

Our main results focus on the case where the exogenous noise level 𝜇 is low. Our first result
is about acyclic networks.

Proposition A.1. For an acyclic network, a unique logit equilibrium exists where

lim
𝜇→0
𝐹𝑖(𝑥) = 0 for each 𝑖 and for all 𝑥 ∈ [0, 1).

Proof. Without loss of generality, (re)label the set of players {𝑃1, ..., 𝑃𝑛} so that each player de-
pends only on lower-indexed players. (There may exist multiple such labelings.) Consider the
sequence of distribution profiles {𝐹0, 𝐹1, 𝐹2, ...}where 𝐹𝑘+1 = 𝐿(𝐹𝑘) and 𝐹0 is an arbitrary action
distribution. Notice that 𝐹𝑘1(⋅) is constant in 𝑘 and independent of 𝐹0 for 𝑘 ≥ 1: player 𝑃1 de-
pends on nobody else, and so his logit response is independent of the initial action distribution.
Furthermore, inspection of (A.1) reveals that as 𝜇 → 0, 𝐹𝑘1(⋅) → 0 for 𝑥 < 1. Similarly, 𝐹𝑘2(⋅) is
independent of 𝐹0(⋅) for 𝑘 ≥ 2, because player 𝑃2 depends only on player 𝑃1 and himself (and
because 𝐹𝑘1(⋅) is constant in 𝑘 for 𝑘 ≥ 1). Indeed, by induction, 𝐹𝑘𝑖 (⋅) is independent of 𝐹0(⋅) for
𝑘 ≥ 𝑖, with 𝐹𝑘𝑖 (𝑥) → 0 for 𝑥 < 1 as 𝜇 → 0. We conclude that the smallest and largest equilibria
coincide. The result follows. ■

In words, if the degree 𝜇 of exogenous noise is small, then everyone in an acyclic network
chooses almost-maximal actions – consistent with our experimental findings from Table 5.

Our second result is about cyclic networks. For tractability, we restrict attention to networks
where all players have the same neighbourhood size, |𝑆𝑖| ≡ ℓ; we interpret ℓ as the density of such
a network.

Proposition A.2. Suppose |𝑆𝑖| ≡ ℓ for some ℓ ≥ 2. Then a unique equilibrium exists, and it is
symmetric: 𝐹𝑖 ≡ 𝐹𝑗 for all 𝑖, 𝑗 ∈ {1, ..., 𝑛}. Further,

lim
𝜇→0
𝐹𝑖(𝑥) =

{
{
{

0 ∶ ℓ < 1/𝑐
1 ∶ ℓ > 1/𝑐

for all 𝑥 ∈ [0, 1). (A.2)

Proof. Consider the sequence of distribution profiles {𝐹0, 𝐹1, ...} where 𝐹𝑛+1 = 𝐿(𝐹𝑛) and 𝐹0 =
(1, ..., 1). This sequence converges to the smallest logit equilibrium of the network game. But no-
tice that this sequence coincides with the corresponding sequence for the classic ℓ-player min-
imum game, and thus also converges to an equilibrium of the classic ℓ-player minimum game.
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Similarly, the largest logit equilibrium of the network game coincides with an equilibrium of the
classic ℓ-player minimum game.

Anderson, Goeree, and Holt (2001) show that the classic ℓ-player minimum game has a
unique logit equilibrium satisfying Equation (A.2). Thismust equal both the largest and smallest
logit equilibrium of the network game; thus it is also the unique logit equilibrium of the network
game. ■

Note that any suchnetworkwith density ℓ ≥ 2 is cyclic. PropositionA.2 tells us thatwith such
networks, there exists a threshold of network density belowwhich actions are near-maximal, and
above which actions are near-minimal.

Proposition A.2 highlights two broad points. First, coordination may fail dramatically in
cyclic networks, even for arbitrarily low noise levels – in contrast to acyclic networks. Second,
network density has a dramatic impact on coordination in cyclic networks; in contrast, Propo-
sition A.1 tells us that network density has little effect on coordination in acyclic networks when
noise levels are low. Put another way, the comparative static effect of Lemma A.2 – that in-
creased network density reduces coordination – is relatively weak in acyclic networks and rel-
atively strong in cyclic networks. These predictions find support in our experimental results
(Table 5 and 6).

The mapping from Proposition A.2 to our experimental implementation of dense cyclic
networks is imperfect. The dense cyclic networks of our experiment do not satisfy the equal-
neighbour-hood-size condition, so Proposition A.2 does not apply directly. Nonetheless, both
our theory and experiment capture the essential property of dense cyclic networks: that there
are many players each embedded in many cycles.

Proposition A.2 also implies that, consistent with our experimental findings in Table 7, the
level of coordination is independent of cycle length. To highlight this point, the following corol-
lary focuses on sparse cyclic networks, which correspond to the case ℓ = 2.

Corollary A.1. Every sparse cyclic network has a unique symmetric logit equilibrium where 𝐹𝑖 is
(for given 𝜇) independent of cycle length 𝑛.

Our final result is about how participants’ actions vary with their hierarchical position in
acyclic networks. It matches our experimental finding from Table 8 that “higher-up” (higher-
indexed) participants in our acyclic networks play lower actions.

Proposition A.3. In any of the sparse or dense acyclic networks, in the unique logit equilibrium,

for all 𝑖 > 𝑗,
𝐹𝑖(⋅) is strictly dominated by 𝐹𝑗(⋅).

Proof. Notice that both our sparse and dense acyclic networks satisfy the following pecking-order
property: If 𝑖 > 𝑗, then there is an injection 𝜑 from 𝑆𝑗 to 𝑆𝑖 such that for any player 𝑃 ∈ 𝑆𝑗, the
corresponding player 𝜑(𝑃) ∈ 𝑆𝑖 has weakly higher index than 𝑃. Further, the pecking order is
strict in the sense that 𝑆𝑗 ≠ 𝑆𝑖 for 𝑖 ≠ 𝑗. In addition, because the network is acyclic, any 𝑃 ∈ 𝑆𝑗 is
also in 𝑆𝑖 only if 𝑖 ≥ 𝑗.
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Consider the sequence of distribution profiles {𝐹0, 𝐹1, ...} where 𝐹𝑛+1 = 𝐿(𝐹𝑛) and 𝐹0 =
(1, ..., 1), and note that this sequence converges to the unique logit equilibrium. We claim that

𝐹𝑘𝑖 (𝑥) ≥ 𝐹𝑘𝑗 (𝑥) for all 𝑖 > 𝑗 and all 𝑥 ∈ [0, 1]. (A.3)

The inequality (A.3) holds for 𝑘 = 0. Thus, given the pecking-order property, the inequality
holds by induction for all 𝑘 ≥ 0. This implies that 𝐹∞𝑖 (𝑥) ≥ 𝐹∞𝑗 (𝑥) for all 𝑖 > 𝑗 and 𝑥 ∈ [0, 1]:
that is, the inequality in the Proposition holds weakly for all 𝑖 > 𝑗. It remains to show that the
dominance is strict. But this follows straightforwardly by induction. Consider the claim that 𝐹𝑗
strictly dominates 𝐹𝑗+1 for all 𝑗 ≤ 𝑘. The claim is clearly true for 𝑘 = 1; and if the claim is true
for 𝑘, then 𝐹𝑘 strictly dominates 𝐹𝑘+1 by the pecking order property, and thus the claim is true
for 𝑘 + 1 also. ■
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B Appendix: Additional Figures and Tables

Mean actions by network position, averaged across treatment are displayed on the vertical axis and rounds are
depicted on the horizontal axis. Each bar color indicates a player’s position within the network: e.g., green = first
player, orange = second player, blue = third player etc. The 25𝑡ℎ-75𝑡ℎ percentiles of the empirical distributions are
highlighted in red. The first (second) column from the left illustrates sparse networks of size 𝑛 = 3 (4). The two
columns on the center-right show networks of size 𝑛 = 6, differing in density with sparse and dense. The top

(bottom) row always shows acyclic (cyclic) networks.

Figure B.1: Evolution of Mean Actions in Acyclic & Cyclic Networks

Table B.1: Tests for Differences between Acyclic & Cyclic Networks

𝑛 = 3 sparse 𝑛 = 4 sparse 𝑛 = 6 sparse 𝑛 = 6 dense
𝐴𝑐𝑡𝑖𝑜𝑛1 .023 .023 .080 .001
𝐴𝑐𝑡𝑖𝑜𝑛1−5 .001 .001 .001 .001
𝐴𝑐𝑡𝑖𝑜𝑛6−10 .001 .001 .001 .001
𝐴𝑐𝑡𝑖𝑜𝑛10 .021 .003 .057 .001

Wilcoxon rank-sum test: reported numbers are 𝑝-values.

Table B.2: Tests for Differences in Empirical Distributions between Acyclic & Cyclic Networks

𝑛 = 3 sparse 𝑛 = 4 sparse 𝑛 = 6 sparse 𝑛 = 6 dense
KS ES KS ES KS ES KS ES

𝐴𝑐𝑡𝑖𝑜𝑛1 .038 .057 .004 .090 .031 .092 .018 .012
𝐴𝑐𝑡𝑖𝑜𝑛1−5 .001 .001 .001 .001 .001 .001 .001 .001
𝐴𝑐𝑡𝑖𝑜𝑛6−10 .001 .001 .001 .001 .001 .001 .001 .001
𝐴𝑐𝑡𝑖𝑜𝑛10 .001 .001 .001 .001 .001 .001 .001 .001

KS: Two-sample Kolmogorov-Smirnov test; ES: Two-sample Epps-Singleton test.
Reported numbers are 𝑝-values.
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Table B.3: Time Trends in Mean Actions for Groups of Size 𝑛 = {2, 12}

𝑛 = 2 𝑛 = 12
𝐴𝑐𝑡𝑖𝑜𝑛1 4.30 5.67

[.80] [.43]
𝐴𝑐𝑡𝑖𝑜𝑛1−5 4.39 6.03

[1.60] [.64]
𝐴𝑐𝑡𝑖𝑜𝑛6−10 4.55 6.90

[2.33] [.16]
𝐴𝑐𝑡𝑖𝑜𝑛10 4.50 7.00

[2.53] [0]
Mean [st. dev.] action, averaged over groups.

Table B.4: Time Trends in Mean Actions – Acyclic Networks without 𝑃1

𝑛 = 3 𝑛 = 4 𝑛 = 6 𝑛 = 6
sparse sparse sparse dense

𝐴𝑐𝑡𝑖𝑜𝑛1 5.50 5.53 5.36 5.14
[.66] [1.01] [.87] [.63]

𝐴𝑐𝑡𝑖𝑜𝑛1−5 5.67 6.00 5.80 5.47
[1.12] [.86] [.99] [.99]

𝐴𝑐𝑡𝑖𝑜𝑛6−10 6.22 6.37 6.35 6.42
[1.10] [.72] [.99] [1.18]

𝐴𝑐𝑡𝑖𝑜𝑛10 6.39 6.63 6.46 6.66
[.74] [.58] [.88] [.75]

Mean [st. dev.] action, averaged over groups.

Table B.5: Tests for Differences between Acyclic & Cyclic Networks without 𝑃1

𝑛 = 3 sparse 𝑛 = 4 sparse 𝑛 = 6 sparse 𝑛 = 6 dense
𝐴𝑐𝑡𝑖𝑜𝑛1 .096 .126 .323 .007
𝐴𝑐𝑡𝑖𝑜𝑛1−5 .001 .001 .002 .001
𝐴𝑐𝑡𝑖𝑜𝑛6−10 .001 .001 .001 .001
𝐴𝑐𝑡𝑖𝑜𝑛10 .034 .003 .057 .001

Wilcoxon rank-sum test: reported numbers are 𝑝-values.
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Table B.6: Average Prediction Error by Network Position (All Rounds)

Network Structure 𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 𝑃6 ALL

sparse 𝑛 = 3 acyclic .64 1.24 .94
[1.10] [1.34] [1.26]

𝑛 = 3 cyclic 1.02 .87 1.15 1.01
[1.38] [1.27] [1.28] [1.31]

sparse 𝑛 = 4 acyclic .49 .77 1.34 .87
[1.31] [1.29] [1.44] [1.34]

𝑛 = 4 cyclic 1.48 1.14 1.57 1.53 1.43
[1.64] [1.39] [1.56] [1.41] [1.51]

sparse 𝑛 = 6 acyclic .75 .82 .89 .68 .63 .75
[1.41] [1.31] [1.36] [1.29] [0.91] [1.27]

𝑛 = 6 cyclic 1.46 0.83 1.35 1.41 1.43 1.38 1.31
[1.64] [1.09] [1.25] [1.56] [1.44] [1.51] [1.44]

dense 𝑛 = 6 acyclic .38 1.07 1.05 1.24 1.42 1.03
[1.18] [1.77] [1.68] [1.70] [1.74] [1.66]

𝑛 = 6 cyclic 1.52 1.64 1.30 1.39 0.85 1.27 1.33
[1.79] [1.73] [1.64] [1.51] [1.17] [1.82] [1.64]

Mean [st. dev.] difference. See Appendix D for an illustration of network positions.

Table B.7: Tests for Differences in Prediction Errors 𝑥∗𝑖,𝑡 between Acyclic & Cyclic Networks

𝑛 = 3 sparse 𝑛 = 4 sparse 𝑛 = 6 sparse 𝑛 = 6 dense
Error1 0.2441 0.0269 0.0201 0.0269
Error1−5 0.3406 0.0001 0.0001 0.0224
Error6−10 0.2589 0.0009 0.0001 0.0004
Error10 0.2556 0.0334 0.0570 0.1156

Wilcoxon rank-sum test: reported numbers are 𝑝-values.
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Figure B.2: Empirical Distributions of Acyclic & Cyclic Networks
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C Appendix: Neighbourhood-Minimum Action Analysis

Table C.1: Neighbourhood-Minimum Action by Position, Acyclic Networks (Final Round)

𝑛 = 3 𝑛 = 4 𝑛 = 6 𝑛 = 6 𝑛 = 12
sparse sparse sparse dense dense

𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝑃1 6.78 6.90 6.80 7.00 7.00
[.44] [.32] [.63] [0] [0]

𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝑃2 6.44 6.70 6.70 6.90 7.00
[.73] [.67] [.67] [.32] [0]

𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝑃3 6.11 6.70 6.80 6.30 7.00
[.93] [.67] [.42] [1.89] [0]

𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝑃4 6.30 6.40 6.30 7.00
[1.06] [1.27] [1.89] [0]

𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝑃5 6.20 5.90 7.00
[1.32] [2.33] [0]

𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝑃6 6.00 5.90 7.00
[1.41] [2.32] [0]

⋮
𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝑃12 7.00

[0]
Mean [st. dev.] neighbourhood-minimum action by position, averaged across groups.

Table C.2: Neighbourhood-Minimum Action by Position, Cyclic Networks
(Final Round)

𝑛 = 2 𝑛 = 3 𝑛 = 4 𝑛 = 6 𝑛 = 6
dense sparse sparse sparse dense

𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝑃1 4.40 3.80 3.80 4.70 1.60
[2.55] [2.35] [2.10] [2.54] [1.07]

𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝑃2 4.40 3.80 3.90 4.90 1.90
[2.55] [2.35] [2.18] [2.38] [1.73]

𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝑃3 4.20 3.60 4.40 1.90
[2.35] [2.37] [2.46] [1.73]

𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝑃4 3.40 4.20 1.60
[2.22] [2.44] [1.07]

𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝑃5 4.30 1.60
[2.31] [1.07]

𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝑃6 4.40 1.60
[2.32] [1.07]

Mean [st. dev.] neighbourhood-minimum action by network position, averaged
across groups. Table C.3 reports statistical tests for differences inminimum actions
in each player’s neighborhood between cyclic and acyclic treatments.
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Table C.3: Tests for Differences in Neighbourhood-Minimum Actions, Acyclic vs. Cyclic Net-
works

𝑛 = 3 sparse 𝑛 = 4 sparse 𝑛 = 6 sparse 𝑛 = 6 dense
𝑀𝑖𝑛𝑖𝑚𝑢𝑚1 .012 .001 .019 .001
𝑀𝑖𝑛𝑖𝑚𝑢𝑚1−5 .001 .001 .001 .001
𝑀𝑖𝑛𝑖𝑚𝑢𝑚6−10 .001 .001 .001 .001
𝑀𝑖𝑛𝑖𝑚𝑢𝑚10 .021 .002 .048 .001

Wilcoxon rank-sum test: reported numbers are 𝑝-values.

Table C.4: Time Trends in Neighbourhood-Minimum Actions, Acyclic vs. Cyclic Networks

𝑛 = 3 sparse 𝑛 = 4 sparse 𝑛 = 6 sparse 𝑛 = 6 dense
acyclic cyclic acyclic cyclic acyclic cyclic acyclic cyclic

𝑀𝑖𝑛𝑖𝑚𝑢𝑚1 5.37 3.43 5.26 3.95 5.00 4.02 4.27 2.28
[.81] [1.69] [.82] [.88] [.86] [.80] [.96] [.69]

𝑀𝑖𝑛𝑖𝑚𝑢𝑚1−5 5.75 3.77 5.99 4.23 5.53 4.34 4.95 2.04
[1.11] [1.88] [.84] [1.30] [1.10] [1.14] [1.37] [.96]

𝑀𝑖𝑛𝑖𝑚𝑢𝑚6−10 6.36 3.62 6.27 3.98 6.31 4.59 6.34 1.75
[.94] [2.04] [.97] [1.82] [1.04] [1.95] [1.23] [1.03]

𝑀𝑖𝑛𝑖𝑚𝑢𝑚10 6.44 3.93 6.65 3.68 6.48 4.48 6.38 1.70
[.53] [2.27] [.64] [2.08] [.87] [2.32] [1.37] [1.29]

Mean [st. dev.] neighbourhood-minimum action, averaged across groups. For acyclic networks, Jonckheere
tests for time trends and for ascending order yield 𝑝-values of 0.0002, 0.0005, 0.0001, and 0.0001 for sparse
𝑛 = 3, 4, 6 and dense 6, respectively. Conversely, testing for descending order in cyclic networks generates
p-values of 0.3715, 0.1586, 0.8028, and 0.0048 for sparse 𝑛 = 3, 4, 6 and dense 𝑛 = 6, respectively.
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D Appendix: Experimental Implementation of Networks
For each network, we illustrate the interface that participants experienced. Our experimental
implementation in z-Tree indicates a participant’s position within the network, and also high-
lights his neighbourhood (which we called his watch-list). The participant’s position is high-
lighted in red, and his watch-list is circled in red.
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Figure D.1: Acyclic Sparse Networks
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Figure D.2: Cyclic Sparse Networks
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Figure D.3: Dense Acyclic & Cyclic 6-Player Networks
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Figure D.4: Acyclic Dense 12-Player Networks
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