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1 Introduction

Gradual learning about the world is at the center of many economic decisions. For
instance, it is well understood that learning is an important aspect in investment de-
cisions in private assets (see, e.g., Sorensen 2008). The trade-off between exploitation
vs. exploration, which, amongst others, is at the heart of venture-capital investment
decisions, is canonically analyzed in the framework of the so-called bandit model (see
e.g., Bergemann and Välimäki 2008). Bergemann and Hege (2005) analyzes the im-
pact of feedback on incentives for an entrepreneur who receives financing from a ven-
ture capitalist and Krieger (2021) studies project continuation decisions where firms
may resolve uncertainty through news about their own results and competitors’ R&D
failures.1 In this paper, we provide experimental evidence showing that, in a strategic
setting, transparency encourages investment. Rather than the relationship between
investor and entrepreneur, this paper is concerned with the informational externali-
ties between different private-asset investors. To isolate the informational dimension,
we examine a setting with purely informational externalities, deviating from the con-
test framework employed by, e.g., Mihm and Schlapp (2019) and Halac, Kartik, and
Liu (2017). In line with theoretical predictions, we find that private information hurts
effort provision with an uncertain technology if news arrives in the form of lumpy
breakdowns.

Games of pure informational externalities have received a lot of attention in the
literature (see, e.g., Bolton and Harris 1999, Keller, Rady, and Cripps 2005 or Hörner,
Klein, and Rady 2022).2 In these games, the information produced by a given player
benefits other players as well—information is a public good, and players tend to pro-
duce inefficiently little of it in equilibrium. Following Keller, Rady, and Cripps (2005),
most papers in this literature have focused on breakthrough, so-called good-news, en-
vironments, where discontinuous events bring good news; the absence of news con-
sequently leads to a continuous deterioration in beliefs. In many real-world applica-
tions, however, discontinuous news events take the formof breakdowns, i.e., bad news;
after all, a staggering 90% of all start-ups fail.3 Such failure may well come about as

1Bergemann and Hege (1998), Manso (2011) and Klein (2016) also analyze incentive provision in
a principal-agent setting; Ederer and Manso (2013) provide experimental evidence. Levinthal (1997),
March (1991), Azoulay, Graff Zivin, and Manso (2011) study innovation search and examine what
drives risky exploration among innovators.

2Wolitzky (2018) analyzes the trade-off between a safe and a risky option in the context of a con-
tinuum of short-lived players making decisions sequentially. For an application to political economics,
see Callander and Harstad (2015) who analyze policy experimentation in federal systems.

3For up-to-date statistics, see, e.g., Kotashev (2024) and Howarth (2025).
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a result of a sudden, singular, event, such as the discovery of severe side effects stem-
ming from a medical drug, or the catastrophic malfunctioning of some technology.
Theoretically, it is well understood (see, e.g., Keller and Rady 2015, or Wagner and
Klein 2022) that the mechanisms underlying the bad-news strategic-learning models
differ sharply from those under good news. While Hoelzemann and Klein (2021) has
experimentally investigated strategic experimentation under good news, and Hoelze-
mann, Manso, Nagaraj, and Tranchero (2024) investigates the role of players’ infor-
mation in a strategic setting with good news, we are, to the best of our knowledge,
the first to experimentally investigate a bad-news strategic-experimentation setting.
As predicted, behavior contrasts sharply with that in breakthrough environments, we
believe our investigation to be filling an important gap in the literature.

The scant attention given to settingswith breakdowns is surprising because of their
economic importance beyond investment choices and the financial world: Bad-news
learning processes naturally occur upon the introduction of a new technology that
holds out hopes of cost savings but entails risks. Such risky technologies include new
drugs and medical devices, and innovative processes such as hydraulic fracturing for
oil production. Some technologies that are socially undesirable, perhaps because they
impose negative externalities on other sectors, also fit in this broad class. Consider
financial fraud or tax evasion when agents have incomplete information about the
effectiveness of the detection technology. In all these cases, there also exist significant
barriers to the flowof information,making unobservable actions a good starting point
for the analysis. For example, the decision to evade taxes is private, but getting caught
is typically a public event.

In this paper, we are investigating in particular the role of the observability of ac-
tions in a bad-news game of strategic experimentation with bandits. These are games
of purely informational externalities, where players have an incentive to free-ride
on the information produced by the other players. In a continuous-time, infinite-
horizon, setting, it is theoretically known that, in a conclusive bad-news model, pri-
vate information tends to be bad for welfare (Bonatti and Hörner 2017). This is be-
cause, in the absence of conclusive news, observing a player’s shirking in information
production makes the other player(s) more pessimistic than they would be on the
equilibrium path if the conclusive bad news fails to materialize. Therefore, with con-
clusive bad news, players will be less prone to slack off in information production if
their actions are observable, because, after observing a deviation, the other player(s)
will be warier about the risky option than they would be absent a deviation. Because
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the only externality in the game is the positive informational externality between play-
ers, leading to a tendency toward under-production of information in equilibrium,
we should expect that making deviations unobservable ought to dampen welfare in a
conclusive bad-news environment.

The main goal of this investigation is to test whether this qualitative prediction
of the theory is borne out by actual behavior in a controlled laboratory environment.
Empirically, we indeed find that both experimentation and payoffs are higher with
observable actions, as predicted by theory. We have constructed our game in a partic-
ularly stark way so that it has the feature that the efficient solution is an equilibrium
if and only if actions are observable. Further, participants use the risky option more
frequently over time, reflecting growing optimism consistent with Bayesian updating.

In summary, the paper makes two main contributions. First, we present evidence
that, in a bad-news setting, behavior is systematically affected by the informational en-
vironment. We find that both experimentation and payoffs are higher with observable
actions. Second, behavior is consistent with strategic free-riding, as information is a
public good and participants produce inefficiently little of it. Participants experiment,
on average, too little even when the efficient solution is an equilibrium.

2 The Environment

Wehave endeavored to come upwith the simplest possible environment in which the-
ory would predict lower welfare with unobservable actions. For the effect to arise, we
need at least three periods. This is because, in the last period, a player does not care
what their opponent will do, as they have no future use for the information learned
in this period. So, only in the first period do players want to alter their opponent’s
future behavior for strategic considerations. We therefore construct a three-period,
two-player, simultaneous-move game, calibrating the parameters in such a way that
the game features the strategic effects we are interested in. The efficient solution has
both players using the risky option in all periods (absent a breakdown); the unique
equilibrium with unobservable actions has both players never using the risky option,
while either always or never playing risky are the two equilibria with observable ac-
tions.

Specifically, there are two risk-neutral players, and the game is played over three
periods 𝑡 = 1, 2, 3. In each period, players make a simultaneous choice. At the end of
the period, outcomes are revealed; we vary whether a player’s choice is observable. If
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the safe arm is used, the payoff will be 0 for certain in that period. Using the risky arm
entails a benefit of 𝑠 = 2857. The risky arm is either good or bad, its type remaining
constant over the three periods of the game. If it is good, its use never imposes a cost.
If it is bad, it leads to a breakdown, imposing a cost of 20000, with a probability of
𝜆 = 0.25 in any period it is used. Conditionally on the risky arm’s type, the draws
are i.i.d. between players and across periods; there are thus no payoff externalities
between the players, as only the player whose arm incurs the breakdown bears its
cost. Players do not initially know if the risky arm is good or bad; they know that
Nature (or the computer) makes the risky arm bad with a probability of 𝑝0 = 0.676.
After a breakdown is observed, the risky arm is known to be bad with probability 1. In
the absence of a breakdown and 𝑛 successful tries of the risky arm, Bayes’ rule implies
that an observer knowing this information should hold the belief 𝑝𝑛 =

𝑝0(1−𝜆)𝑛
𝑝0(1−𝜆)𝑛+1−𝑝0

that the risky arm is bad; i.e., observing that the risky arm has been used without a
breakdown makes players increasingly optimistic about the quality of the risky arm.
Thus, the updated posterior belief either jumps to 1 in case of a breakdown, or declines
with the number of unsuccessful tries 𝑛. Arm types are i.i.d. across games. One
player’s risky arm is good if and only if the other one’s is as well. In the treatment with
observable actions, a player observes all of the other player’s previous actions as well
as the outcomes of these actions. In the treatment with unobservable actions, a player
observes only if the other player has suffered a breakdown of 20000 from the risky
arm or not.

More formally, the solution concept is that of pure-strategy perfect Bayesian equi-
librium.4 Sequential rationality is verified by moving backwards in time. After a
breakdown has been publicly observed, the risky arm is known to be bad, so that
playing safe is the dominant action. Subsequently, we thus verify sequential ratio-
nality conditionally on no breakdown having been observed. We normalize the cost
of a breakdown to 1.5 We write 𝑝𝑖(𝑡) ≡ 𝑝𝑛 for player 𝑖’s Bayesian belief in period
𝑡 ∈ {1, 2, 3}, if 𝑛 = ∑𝑡−1𝑧=1(𝑘𝑖,𝑧 + �̂�−𝑖,𝑧), where we write 𝑘𝑞,𝑧 = 1 (𝑘𝑞,𝑧 = 0) if player
𝑞 ∈ {𝑖, −𝑖} has used the risky (safe) arm in period 𝑧 without suffering a breakdown,
and �̂�−𝑖,𝑧 denotes the action that player 𝑖 thinks that player −𝑖 has taken in period 𝑧. In
the case of observable actions, �̂�−𝑖,𝑧 ≡ 𝑘−𝑖,𝑧; in the case of unobservable actions, �̂�−𝑖,𝑧

4Subgame perfection has no bite as an equilibrium refinement, because the game starts with an
initial move of Nature, which determines the quality of the risky arm; the game therefore admits of no
proper subgames.

5For our parameters, this implies that 𝑠 = 2857/20000 = 0.14285. Recall furthermore that 𝜆 =
0.25, and 𝑝0 = 0.676.
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is pinned down by player 𝑖’s expectations, which are correct in equilibrium.
In the last period 𝑡 = 3, players face a myopic decision problem, where playing

risky is a best response if and only if 𝑝(𝑡 = 3)𝜆 ≤ 𝑠. For our parameters, 𝑝𝑛𝜆 < 𝑠 if
and only if 𝑛 ≥ 2.

Indeed, 𝑝2𝜆 < 𝑠 implies that, after a history of two tries without a breakdown,
playing risky becomes a dominant action. This pins down play in all equilibrium can-
didates in which 𝑘𝑖,1 + 𝑘−𝑖,1 = 2.

Now, let us assume that 𝑘𝑖,1 +𝑘−𝑖,1 = 1. Suppose that 𝑘−𝑖,2 = 1 (so that 𝑘𝑖,3 +𝑘−𝑖,3 =
2). In this case, 𝑘𝑖,2 = 1 is a best response if and only if

𝑠 − 𝑝1𝜆 + (1 − 𝑝1 + 𝑝1(1 − 𝜆)2)𝑠 − 𝑝1𝜆(1 − 𝜆)2 ≥ (1 − 𝑝1 + 𝑝1(1 − 𝜆))𝑠 − 𝑝1𝜆(1 − 𝜆)

⟺ 𝑝1 ≤
𝑠
𝜆

1
1 − (1 − 𝜆)(𝜆 − 𝑠) ,

which holds for our parameters. Thus, 𝑘𝑖,2 = 1 is a best response to 𝑘−𝑖,2 = 1.
Next, let us assume that 𝑘−𝑖,2 = 0. If actions are observable, 𝑘𝑖,2 = 1 will induce
𝑘𝑖,3 +𝑘−𝑖,3 = 2, and 𝑘𝑖,2 = 0will induce 𝑘𝑖,3 = 𝑘−𝑖,3 = 0. Thus, 𝑘𝑖,2 = 1 is a best response
if and only if

𝑠 − 𝑝1𝜆 + (1 − 𝑝1𝜆)𝑠 − 𝑝1𝜆(1 − 𝜆) ≥ 0

⟺ 𝑝1 ≤
𝑠
𝜆
2

2 − (𝜆 − 𝑠) ,

which is not satisfied for our parameters. Thus, 𝑘𝑖,2 = 0 is the unique best response to
𝑘−𝑖,2 = 0 if actions are observable, inducing 𝑘𝑖,3 = 𝑘−𝑖,3 = 0. Now suppose that actions
are unobservable. We have already shown that 𝑘𝑖,2 = 1 (inducing 𝑘𝑖,3 = 𝑘−𝑖,3 = 1)
cannot happen on the equilibrium path. Now, 𝑘𝑖,2 = 𝑘−𝑖,2 = 𝑘𝑖,3 = 𝑘−𝑖,3 = 0 can be
part of an equilibrium if and only if

0 ≥ 𝑠 − 𝑝1𝜆 + (1 − 𝑝1𝜆)𝑠 − 𝑝1𝜆(1 − 𝜆)

⟺ 𝑝1 ≥
𝑠
𝜆
2

2 − (𝜆 − 𝑠) ,

which is satisfied for our parameters, as we have seen.
Thus, in conclusion, after a history such that 𝑘𝑖,1+𝑘−𝑖,1 = 1, both 𝑘𝑖,2 = 𝑘−𝑖,2 = 𝑘𝑖,3 =
𝑘−𝑖,3 = 0 and 𝑘𝑖,2 = 𝑘−𝑖,2 = 𝑘𝑖,3 = 𝑘−𝑖,3 = 1 are compatible with equilibrium, whether
actions are observable or unobservable. It is this non-uniqueness of equilibrium play
after histories 𝑘𝑖,1 +𝑘−𝑖,1 = 1 that will lead to different first-period equilibrium predic-
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tions depending on whether actions are observable or unobservable, as we shall see
below.

Let us turn to histories such that 𝑘𝑖,1 = 𝑘−𝑖,1 = 0. Clearly, 𝑘−𝑖,2 = 𝑘𝑖,3 = 𝑘−𝑖,3 = 0,
while 𝑘𝑖,2 = 1 is not compatible with equilibrium, because 𝑠 − 𝑝0𝜆 < 0 implies that
𝑖 has an incentive to deviate to 𝑘𝑖,2 = 0. Can 𝑘𝑖,2 = 𝑘−𝑖,2 = 𝑘𝑖,3 = 𝑘−𝑖,3 = 1 occur in
equilibrium? If actions are observable (unobservable), a deviation by player 𝑖 in 𝑡 = 2
leads to a path of play of 𝑘𝑖,2 = 𝑘𝑖,3 = 𝑘−𝑖,3 = 0, with 𝑘−𝑖,2 = 1 (𝑘𝑖,2 = 𝑘𝑖,3 = 0, with
𝑘−𝑖,2 = 𝑘−𝑖,3 = 1), giving the deviator 𝑖 a payoff of 0 in both cases; such a deviation is
therefore profitable if and only if

0 > 𝑠 − 𝑝0 + (1 − 𝑝0 + 𝑝0(1 − 𝜆)2)𝑠 − 𝑝0(1 − 𝜆)2𝜆

⟺ 𝑝0 >
𝑠
𝜆

2
1 + 𝑠(2 − 𝜆) + (1 − 𝜆)2 ,

which holds for our parameters. The only equilibrium candidate remaining is thus
𝑘𝑖,2 = 𝑘−𝑖,2 = 𝑘𝑖,3 = 𝑘−𝑖,3 = 0; this clearly is compatible with equilibrium as 𝑠−𝑝0𝜆 < 0.

Let us now move to the first period 𝑡 = 1, and assume that actions are observable.
By our previous analysis, there are four equilibrium candidates: (1.) the utilitarian
optimum, namely 𝑘𝑖,1 = 𝑘−𝑖,1 = 𝑘𝑖,2 = 𝑘−𝑖,2 = 𝑘𝑖,3 = 𝑘−𝑖,3 = 1, (2.) 𝑘𝑖,1 = 𝑘𝑖,2 = 𝑘−𝑖,2 =
𝑘𝑖,3 = 𝑘−𝑖,3 = 1 and 𝑘−𝑖,1 = 0, (3.) 𝑘𝑖,1 = 𝑘−𝑖,1 = 𝑘𝑖,2 = 𝑘−𝑖,2 = 𝑘𝑖,3 = 𝑘−𝑖,3 = 0, and
(4.) 𝑘−𝑖,1 = 𝑘𝑖,2 = 𝑘−𝑖,2 = 𝑘𝑖,3 = 𝑘−𝑖,3 = 0, while 𝑘𝑖,1 = 1. Candidate (4.) can be ruled
out right away, as 𝑠 − 𝑝0𝜆 < 0, so that player 𝑖 has an incentive to deviate in the first
period, whether actions are observable or unobservable.

Let us turn to candidate (1.). With observable actions, a unilateral deviation by 𝑖
in the first period can be “punished” with the continuation equilibrium 𝑘𝑖,2 = 𝑘−𝑖,2 =
𝑘𝑖,3 = 𝑘−𝑖,3 = 0, making the deviation unprofitable; indeed, in the absence of a devia-
tion, players get the utilitarian optimum, which is strictly greater than 0, whereas, by
deviating, 𝑖 receives 0. For unobservable actions, however, this “punishment equilib-
rium” is not available, and (1.) is an equilibrium if and only if

𝑠 − 𝑝0𝜆 − 2𝑝0𝜆(1 − 𝜆)𝑠 + 𝑝0𝜆(1 − 𝜆)(𝑠 + 𝜆) + 𝑝0𝜆(1 − 𝜆)3(𝜆 − 𝑠) ≥ 0

⟺ 𝑝0𝜆[1 − (1 − 𝜆)(𝜆 − 𝑠)(1 + (1 − 𝜆)2)] ≤ 𝑠,

which is violated for our parameters. Therefore, the utilitarian optimum (1.) is an
equilibrium if and only if actions are observable.

Next, let us analyze candidate (2.). If actions are observable (unobservable), a
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first-period deviation by player 𝑖 who is supposed to play risky in that period leads to
play of 𝑘𝑖,1 = 𝑘−𝑖,1 = 𝑘𝑖,2 = 𝑘−𝑖,2 = 𝑘𝑖,3 = 𝑘−𝑖,3 = 0 (𝑘𝑖,1 = 𝑘−𝑖,1 = 𝑘𝑖,2 = 𝑘𝑖,3 = 0, with
𝑘−𝑖,2 = 𝑘−𝑖,3 = 1). In either case, this deviation is profitable if and only if

0 > 𝑠 − 𝑝0𝜆 + (1 − 𝑝0𝜆)𝑠 − 𝑝0(1 − 𝜆)𝜆 + (1 − 𝑝0 + 𝑝0(1 − 𝜆)3)𝑠 − 𝑝0(1 − 𝜆)3𝜆,

which holds for our parameters. Thus, candidate (2.) is eliminated, whether actions
be observable or unobservable.

Finally, let us turn to candidate (3.). If actions are observable, a first-period de-
viation leads to play of either 𝑘𝑖,1 = 1, with 𝑘−𝑖,1 = 𝑘𝑖,2 = 𝑘−𝑖,2 = 𝑘𝑖,3 = 𝑘−𝑖,3 = 0
or 𝑘−𝑖,1 = 0 with 𝑘𝑖,2 = 𝑘−𝑖,2 = 𝑘𝑖,3 = 𝑘−𝑖,3 = 0. In the latter case, the deviation is
unprofitable as 𝑠 − 𝑝0𝜆 < 0; in the former, it is unprofitable by the same argument as
in the previous paragraph. With unobservable actions, deviating in only one period
is unprofitable as 𝑠 − 𝑝0𝜆 < 0. A deviation to 𝑘𝑖,1 = 𝑘𝑖,2 = 𝑘𝑖,3 = 1 is profitable if and
only if

0 < 𝑠 − 𝑝0𝜆 + (1 − 𝑝0 + 𝑝0(1 − 𝜆))[𝑠 − 𝑝1𝜆 + (1 − 𝑝1 + 𝑝1(1 − 𝜆))𝑠 − 𝑝1(1 − 𝜆)𝜆].

Yet, 𝑠 −𝑝0𝜆 < 0, and, as we have shown above, 𝑠 −𝑝1𝜆+ (1 −𝑝1 +𝑝1(1 − 𝜆))𝑠 −𝑝1(1 −
𝜆)𝜆 < 0. We thus conclude that candidate (3.) is an equilibrium, whether actions be
observable or unobservable.

We summarize our findings in the following

Proposition 1. If actions are unobservable, players uniquely always play safe in perfect
Bayesian equilibrium. This remains an equilibrium with observable actions. With ob-
servable actions, the utilitarian optimum (in which players play risky until a breakdown
arrives) is an additional equilibrium, which is supported by the threat of always playing
safe in case of a deviation.

Implications for Behavior Consequently, we hypothesize that action observability
matters. Our behavioral hypotheses are as follows:

• We observe efficient behavior more often with observable than with unobserv-
able actions.

• Participants use the risky arm more when actions are observable.

• Participants’ payoffs are higher when actions are observable.

• Updating of beliefs: Conditionally on no breakdown having occurred, partici-
pants use the risky arm more in later periods.
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3 The Experiment

3.1 Organization

We conducted all experiments in the months of July to November 2023 at the Univer-
sity of Vienna. Participants were recruited from the Vienna Center for Experimental
Economics (VCEE) subject pool using ORSEE (Greiner 2015). No one participated
in more than one session. During the experiments, participants could contact an ex-
perimenter anytime for assistance. After reading the instructions, participants had to
correctly answer several comprehension questions before starting themain part of the
experiment. The experiment was programmed in oTree (Chen, Schonger, and Wick-
ens 2016). We recruited 104 participants and all payments were made in cash. Par-
ticipants earned on average approximately €10.57 from one randomly selected game
and all payments were in cash and in Euros (with a conversion rate of 1000 = €1). The
instructions and experimental interface are reproduced in the Online Appendix.

3.2 Implementation

In order to increase the computational efficiency of the implementation and to in-
crease control, we had simulated all the relevant parameters ahead of time. As all
our stochastic processes are Bernoulli processes, simulating their realizations ahead
of time is equivalent to simulating them as the game progresses. These included sep-
arate processes for the quality of the risky arm and the timing of breakdowns on the
risky arm in case it was bad.6 We generated 25 different sets of realizations of the ran-
dom parameters controlling the quality of the risky arm and the arrivals of the bad
risky arm. These corresponded to 25 different games that each of our participants
played. To make our findings more easily comparable, we have kept the same realiza-
tions for both observable and hidden actions. Participants were randomly assigned
to groups of two players and randomly rematched within a matching group of six to
eight participants after each game. Each participant was randomly assigned either to
the treatment with observable or hidden actions, and played the 25 games in random
order. To ensure a balanced data-collection process, we replicated any order of the 25
games that was used for a matching group in the treatment with observable actions
for a matching group in the treatment with unobservable actions.

As illustrated in Figure 1, in the treatment with observable actions, participants
6Details are available upon request.
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Left: The Observable Actions treatment with public information; right: The Unobservable Actions
treatment with private information.

Figure 1: Experimental Implementation
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could see their opponent’s as well as their own past action choices and payoffs. In the
treatment with unobservable actions, participants could see only if, and when, their
opponent had suffered a breakdown so far as well as their own past action choices and
payoffs.7,8

4 Findings

This section is dedicated to examining the implications for behavior as detailed in
Section 2. For each of the 25 games, we implemented two treatments, with observ-
able and unobservable actions respectively, within two-player groups, comprising 52
groups in total. These groups were randomly re-matched within a matching group
after each game.

We divide our analysis into four distinct sections. Initially, we provide summary
statistics, highlighting both the average intensity of experimentation,∑3𝑡=1

𝑘1,𝑡+𝑘2,𝑡
2 (wh-

ere 𝑘𝑖,𝑡 = 1 (𝑘𝑖,𝑡 = 0) if player 𝑖 played risky (safe) in period 𝑡), and the overall group
payoffs. Following this, our primary analysis examines the aggregate experimental
outcomes, with an initial focus on the distribution patterns of experimentation inten-
sities and group payoffs. Subsequently, we assess efficiency by comparing observed
behavior to the theoretical efficient solution. In addition, we study how behavior re-
lates to our theoretical predictions, in particular consistency with equilibrium. The fi-
nal part of our analysis examines the evolution of behavior over time, specifically how
participants adjust their action choices in games where no breakdowns occur. To en-
hance the robustness of our findings, we include a robustness test, utilizing ordinary
least squares (OLS) regressions with random effects and clustering of standard errors
at the matching-group level. These results are reported in the Online Appendix. Our
results show that the number and order of games previously played by participants
does not significantly influence their behavior.

4.1 Experimentation and Payoffs

As outlined in Section 2, we anticipate that average experimentation intensities and
group payoffs will be higher in the treatment where monitoring by others is possible.

7Screenshots can be found in the Online Appendix.
8We chose not to elicit risk preferences due to the small stakes involved and prior studies not

detecting any statistically significant effect or impact on behavior in similar bandit environments with
good news (Hoelzemann and Klein 2021, Hoelzemann, Manso, Nagaraj, and Tranchero 2024).
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We measure experimentation intensity for each player up until the moment a first
breakdown occurs to any player in the group. Table I presents the observed mean
experimentation intensities and the average total payoffs, calculated using group av-
erages across all games for both treatments. In particular, we regressed experimenta-
tion intensity and payoffs on the treatment dummy Public, which is 0 for the private-
information (unobservable-actions) treatment and 1 for the public-information (ob-
servable-actions) treatment.

Table I: OLS Estimations

Experimentation Intensity Payoffs

Intercept 0.603∗∗∗ 1159.982∗∗∗
(0.045) (255.138)

Public 0.156∗∗∗ 2813.060∗∗∗
(0.062) (446.359)

N 1300 1300
R-squared 0.076 0.014

For all estimations, robust standard errors are clustered at the matching-group level and shown in
brackets. ∗∗∗Significant at the 1 percent level; ∗∗Significant at the 5 percent level; ∗Significant at the

10 percent level

We observe a pronounced positive impact of action observability on both experi-
mentation intensity and payoffs. Specifically, participants pull the risky arm consid-
erably more often when monitoring is feasible, resulting in markedly higher payoffs
at the group level.

Extending our analysis beyond mere point estimates, Figure 2 illustrates the em-
pirical distribution of experimentation intensities and group payoffs across the differ-
ent treatments.

As can be seen in Figure 2, both experimentation intensities and group payoffs ex-
hibit first-order stochastic dominance in the treatment with observable actions over
the treatment where actions are unobservable. Kolmogorov-Smirnov tests for evalu-
ating similarity of distributions yield 𝑝-values of 0.001.

We summarize these findings in the following:

Experimentation Participants use the risky arm more when actions are observable.

Payoffs Group payoffs are higher when actions are observable.
That participants should use the risky arm more with observable actions is con-

sistent with the (larger) equilibrium set, unless one expected for some reason that the
equilibrium in which everyone plays safe all the time was the only equilibrium being
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The sample cumulative distribution functions for experimentation intensity and payoffs are shown, by
information condition.

Figure 2: Empirical CDFs of Experimentation Intensities and Payoffs

played. In particular, note that there is a stark difference in first-round experimenta-
tion intensities, see Figure 4, an effect that cannot be accounted for by channels other
than the strategic forces related to action observability.

4.2 Efficiency Benchmark

To assess the efficiency of participants’ behavior, our analysis concentrates on games
where no breakdown was suffered during the three interaction periods. In the treat-
ment where actions are observable, the average experimentation intensity stands at
0.762 (with a standard deviation of 0.253, N=312), significantly deviating from the
theoretical efficient solution of 1. Out of 312 observations, 136 are in alignment with
the efficient solution. Conversely, for games with unobservable actions, the average
experimentation intensity with 0.592 and a standard deviation of 0.280 for N=312 is
also significantly different from the efficient solution, and only 57 of 312 observations
directly coincide with the efficient solution.

Efficiency Participants free-ride, i.e., they use the risky arm less than what would be
efficient with either observable or unobservable actions.
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4.3 Consistency of Behavior with Equilibrium

Here too, our analysis focuses on the 312 games where no breakdown was suffered
during the three interaction periods. In Figure 3, we highlight the observed risky play
for each treatment separately, providing a detailed view of how behavior is associated
with equilibrium play. In particular, we plot the fraction of games in which risky was
played 𝑟 times divided by the number of periods 𝑡multiplied by the number of players
𝑛, i.e., 𝑟𝑡×𝑛 .

The experimentation intensity in games without breakdowns is shown, by information condition.

Figure 3: Experimentation Intensities

When actions are observable, 144 of 312 games are consistent with equilibrium;
among these, the overwhelming majority, namely 136 games, coincide with the effi-
cient solution. By contrast, with hidden actions, play that is consistent with the—now
smaller—equilibrium set significantly decreases, with only 32 of 312 in line with the
theoretical prediction. Unsurprisingly, the difference in equilibrium play by treat-
ment is highly statistically significant with 𝑝-values of 0.001 for both a t-test and a
two-sided Wilcoxon rank-sum test.

This leads to the following:

Equilibrium Behavior is more often consistent with equilibrium when actions are
observable.
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4.4 Dynamic Evolution of Behavior

We now shift our focus to the dynamics of observed behavior. We are particularly in-
terested in whether, consistently with Bayesian updating, participants increase their
use of the risky arm as the game progresses. Our attention remains on games where
no breakdown is incurred throughout the three periods of interaction. In Figure 4, we
graph the observed experimentation intensities for each period and treatment sepa-
rately, providing a detailed view of how behavior evolves over the course of the game.

The average experimentation intensity over time in games without breakdowns is shown, by
information condition.

Figure 4: Experimentation Intensities over Time

While it is unrealistic to expect our participants to calculate posterior beliefs pre-
cisely using Bayes’ rule, we nevertheless anticipate that, in the absence of a break-
down, participants will increasingly use the risky arm as the game progresses, reflect-
ing growing optimism. At the beginning of a game without any breakdowns, partic-
ipants are indeed significantly less likely to choose the risky arm than in later peri-
ods. To examine changes in behavior over time, we employ two-sided t-tests for para-
metric analysis and two-sided Wilcoxon rank-sum (Mann-Whitney) tests for non-
parametric analysis, treating group averages as independent observations. Regardless
of whether actions were observable, we find that the differences in experimentation
intensities across time are highly statistically significant when comparing behavior in
the first period to that in either the second or the last period. In the treatment with
observable actions, t-tests (two-sided Wilcoxon rank-sum tests) produce 𝑝-values of
𝑝12 = 0.012 (0.024), 𝑝13 = 0.089 (0.121), and 𝑝23 = 0.411 (0.480), where 𝑝𝛼𝛽 is the

15



𝑝-value when comparing periods 𝛼 and 𝛽. With unobservable actions, by contrast,
we find 𝑝-values of 𝑝12 = 0.001 (0.002), 𝑝13 = 0.008 (0.007), and 𝑝23 = 0.643 (0.751),
respectively.

Additionally, we also analyze mean experimentation intensities across treatments
for each period. Participants engage with the risky arm more frequently when actions
are observable. The differences in all periods are highly statistically significant, with
𝑝-values of 0.001 for both tests.

We summarize these results as follows:

Belief Updating Conditionally on no breakdown having occurred, participants use
the risky arm more in later periods.

4.5 Econometric Robustness Tests

As a further robustness test and to complement our previous analyses and key ele-
ments discussed, we ran ordinary least-square regressions with random effects con-
trolling for learning effects. In particular, we regressed experimentation intensity
and individual payoffs on the treatment dummy Public, which is 0 for the private-
information (unobservable-actions) treatment and 1 for the public-information (ob-
servable-actions) treatment. Recall that participants played the 25 games in random
order and any order of these games that was used for participants in the public in-
formation sessions was replicated for participants in the private information sessions.
In order to verify that participants treated the games they successively played as in-
dependent games rather than as parts of a larger super-game, we define a weighted
learning function {𝑔𝑜} = {1/𝑜} where 𝑜 (𝑜 ∈ {1,⋯ , 25}) corresponds to the random
order in which each participant was exposed to each game. All regressions control
for trends over time using this weighted learning function. The results do not quali-
tatively change when we replace the learning function with a linear version such that
{𝑔𝑜} = {𝑜}. Further, the results do not qualitatively change either when we include
controls for matching groups or sessions, age, gender, field of study as well as attempts
needed to correctly answer the quiz questions at the start of the experiment. To ac-
count for the fact that behavior within matching groups is not independent, we treat
eachmatching group as our units of statistically independent observations and cluster
standard errors by matching group.

Table II lists the results from this analysis.
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Table II: OLS Estimations with Random Effects of
Experimentation Intensity and Payoffs.

Experimentation Intensity Individual
All No Breakdown Until Breakdown Payoffs

Intercept 0.596∗∗∗ 0.586∗∗∗ 0.603∗∗∗ 418.199∗
(0.044) (0.049) (0.054) (239.186)

Public 0.157∗∗∗ 0.170∗∗∗ 0.280∗∗∗ 1398.080∗∗∗
(0.052) (0.054) (0.054) (174.776)

Learning 0.034 0.040 -0.082 1059.966
(0.026) (0.029) (0.106) (1077.624)

𝜎𝜖 0.287 0.268 0.293 8494.653
𝜎𝑢 0.216 0.212 0.243 0
N 2600 1248 336 2600
(Between) R-squared 0.113 0.127 0.199 0.189
For all estimations, robust standard errors are clustered at the session level and shown in brackets.
∗∗∗Significant at the 1 percent level; ∗∗Significant at the 5 percent level; ∗Significant at the 10 percent

level

Wefind a strong positive effect of public information on experimentation intensity
across all games, games without breakdowns, games with breakdowns before the last
period, and payoffs.

5 Related Literature

Strategic Experimentation Our theoretical framework can be viewed as a model
of experimentation. Initially, the literature focussed on the trade-off of an individ-
ual decision maker who acts in isolation. Bolton and Harris (1999) and Keller, Rady,
and Cripps (2005) have extended the individual decision problem to a multi-player
framework. Since then this literature is steadily growing. For example, Klein and
Rady (2011), Klein (2013), and Hörner, Klein, and Rady (2022) study various ban-
dit problems in which different players may choose different arms. While free-riding
is a central element in these studies as well, players’ actions are observable. Several
studies analyzed experimentation in teams where the outcome of each player’s ac-
tion is unobservable while their actions are observable (Rosenberg, Solan, and Vieille
2007, Murto and Välimäki 2011, Hopenhayn and Squintani 2011), while Bonatti and
Hörner (2011) studies the case of observable outcomes with unobservable actions. In
particular, Keller and Rady (2015) study the bad-news setting under public informa-
tion, while, closest to our setting, Bonatti andHörner (2017) study a bad-news setting
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where actions are not observed but outcomes are.

Strategic Experimentation Experiments in Good-News Environments Our paper
is embedded in an emerging literature that studies behavior in experiments of exper-
imentation with breakthrough-learning in groups; that is, multi-player settings with
strategic links across players where decision-makers are not acting in isolation and in-
formational externalities exist. We are aware of only four other experimental investi-
gations of good-news strategic-experimentation problems with bandits. Hoelzemann
and Klein (2021) experimentally implement a dynamic public-good problem where
information about agents’ common state of the world is dynamically evolving. Ob-
served behavior is consistent with free-riding because of strategic concerns, and par-
ticipants adopt non-cut-off behavior and frequent switches of action. Boyce, Bruner,
andMcKee (2016) study a setting with ambiguity concerning the type of the risky arm
to test strategic free-riding in a two-player, two-period, game. Players are asymmet-
ric in their costs in that one player was known to have lower opportunity costs for
playing risky than the other, so that it was clear which player ought to play the free-
rider in the first period. Von Essen, Huysentruyt, and Miettinen (2020) implement a
treasure-hunt game in the laboratory, finding that the information externality can in-
duce an encouragement effect. Hoelzemann, Manso, Nagaraj, and Tranchero (2024)
study an environment where players must explore across different options with vary-
ing but uncertain payoffs. While informative signals, interpreted as data, can typically
reduce uncertainty and improve welfare, in their setting it can instead decrease indi-
vidual and group payoffs. When data highlights sufficiently attractive but dominated
options, it can crowd-out exploration and thus lower payoffs as compared to when no
data is provided. Importantly, empirical evidence from the field of genetics research
provides a real-world confirmation of their framework and shows that data on genetic
targets of medium promise can significantly increase the delay of valuable discoveries.

By contrast, this paper offers the first experimental investigation of breakdown-
learning in a strategic setting. Observed behavior is markedly different from that doc-
umented in strategic environments with good news. Moreover, observed behavior
is consistent with strategic free-riding; thus documenting that free-riding on infor-
mation because of strategic concerns also exists in bad-news learning environments,
while differing in its form of manifestation.
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