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Abstract

We study a game of strategic experimentation in which information arrives
through fully revealing, publicly observable, breakdowns. In line with our theo-
retical predictions, we find that players experiment significantly less and payoffs
are lower when actions are hidden. We run a robustness test where we study a
game of strategic experimentation in which information arrives through fully re-
vealing, publicly observable, breakthroughs. In the case of breakthroughs, both
experimentation and payoffs are higher with hidden actions—even when theory
does not predict any difference in equilibrium. We view this as evidence that be-
havior is systematically affected by the informational environment. Moreover,
behavior is consistent with strategic free-riding, as information is a public good
and players produce inefficiently little of it.
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1 Introduction
Games of pure informational externalities have received a lot of attention in the litera-
ture (see, e.g., Bolton and Harris 1999, Keller, Rady, and Cripps 2005 or Hörner, Klein,
and Rady 2022). In these games, the information produced by a given player bene-
fits other players as well—information production is a public good, and players tend
to produce inefficiently little of it in equilibrium. Following Keller, Rady, and Cripps
(2005), most papers in this literature have focused on so-called good-news environ-
ments, where discontinuous events bring good news; the absence of news consequently
leads to a continuous deterioration in beliefs. In many real-world applications, how-
ever, discontinuous news events are in the form of bad news; think of severe side effects
stemming from a medical drug, or the catastrophic malfunctioning of some technol-
ogy, for instance. Theoretically, it is well understood (see, e.g., Keller and Rady 2015,
or Wagner and Klein 2022) that the mechanisms underlying the bad-news strategic-
learning models differ sharply from those under good news. While Hoelzemann and
Klein (2021) has experimentally investigated strategic experimentation under good
news, and Hoelzemann, Manso, Nagaraj, and Tranchero (2024) investigates the role
of players’ information in a strategic setting, we are, to the best of our knowledge, the
first to experimentally investigate a bad-news strategic-experimentation setting.

The scant attention given to bad-news settings is surprising because of their eco-
nomic importance: Bad-news learning processes naturally occur upon the introduc-
tion of a new technology that holds out hopes of cost savings but entails risks. Such
risky technologies include new drugs and medical devices, and innovative processes
such as hydraulic fracturing for oil production. Some technologies that are socially un-
desirable, perhaps because they impose negative externalities on other sectors, also fit
in this broad class. Consider financial fraud or tax evasion when agents have incom-
plete information about the effectiveness of the detection technology. In all these cases,
there also exist significant barriers to the flow of information, making unobservable ac-
tions a good starting point for the analysis. For example, the decision to evade taxes is
private, but getting caught is typically a public event.

In this paper, we are investigating in particular the role of the observability of ac-
tions in a bad-news game of strategic experimentationwith bandits. These are games of
purely informational externalities, where players have an incentive to free-ride on the
information produced by the other players. In a continuous-time, infinite-horizon, set-
ting, it is theoretically known that, in a conclusive bad-newsmodel, private information
tends to be bad for welfare (Bonatti and Hörner 2017). This is because, in the absence
of conclusive news, observing a player’s shirking in information production makes the
other player(s) more pessimistic than they would be on the equilibrium path if the
conclusive bad news fails to materialize. Therefore, with conclusive bad news, players
will be less prone to slack off in information production if their actions are observable,
because, after observing a deviation, the other player(s) will be warier about the risky
option than they would be absent a deviation. Because the only externality in the game
is the positive informational externality between players, leading to a tendency toward
under-production of information in equilibrium, we should expect that making devi-
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ations unobservable ought to dampen welfare in a conclusive bad-news environment.
The main goal of this investigation is to test whether this qualitative prediction of

the theory is borne out by actual behavior in a controlled laboratory environment. In
order to do so, we have endeavored to come up with the simplest possible environ-
ment in which theory would predict the qualitative effect just described to arise. For
the effect to arise, we need at least three periods. This is because, in the last period,
a player does not care what their opponent will do, as they have no future use for the
information learned in this period. So, only in the first period do players want to alter
their opponent’s future behavior for strategic considerations. We therefore construct a
three-period, two-player, game, calibrating the parameters in such a way that the game
features the strategic effects we are interested in. We have constructed our game in a
particularly stark way so that it has the feature that the efficient solution is an equilib-
rium if and only if actions are observable. The efficient solution has both players using
the risky option in all periods (absent a breakdown); the unique equilibrium with un-
observable actions has both players never using the risky option, while either always
or never playing risky are the two equilibria with observable actions. Empirically, both
experimentation and payoffs are higher with observable actions. Further, participants
use the risky option more frequently over time, reflecting growing optimism.

To understand whether the differences in behavior between the informational set-
tings depend on whether they are predicted by (perfect Bayesian) equilibrium in the
particular game, or whether they are a more general feature of behavior, we study a
three-period game in the good-news setting. To do so, we chose simple numerical val-
ues for the parameters that additionally have the property that there is no difference
in equilibrium predictions depending on whether actions are observable or not. Infor-
mation now arrives through fully revealing, publicly observable, breakthroughs instead
of breakdowns. In contrast to our bad-news game, it is known that, in a continuous-
time, infinite-horizon, setting, private information is good for welfare in a conclusive
good-news game (Bonatti and Hörner 2011). This is because, in the absence of con-
clusive news, observing a player’s shirking in information production makes the other
player(s) more optimistic than they should be on the equilibrium path. Therefore, the
other player(s) will tend to pick up the slack in information production after an ob-
servable deviation to shirking. Therefore, with conclusive good news in continuous
time, players will be more prone to slacking off in information production if their ac-
tions are observable. Because the only externality in the game is the positive infor-
mational externality between players, leading to a tendency toward under-production
of information in equilibrium, making deviations unobservable improves welfare in a
continuous-time, infinite-horizon, conclusive good-news environment. Thus, in con-
trast to naïve intuition, less observability, and hence less information, can be welfare-
improving in a game of purely informational externalities. We thus want to test if,
in our good-news game, participants will free-ride more, and therefore achieve lower
average payoffs, when actions are observable, even though this is not an equilibrium
feature of our three-period game. Empirically, participants experiment indeed signifi-
cantly less when actions are observable. Moreover, their payoffs are lower. Over time,
participants decrease their use of the risky option, reflecting growing pessimism.
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In summary, the paper makes two main contributions. First, we present evidence
that behavior is systematically affected by the informational environment. In the bad-
news environment, we find that both experimentation and payoffs are higher with ob-
servable actions. By contrast, in the good-news environment, participants experiment
significantly less, and their payoffs are lower, when actions are observable, even though,
in our game, there is no difference in equilibrium predictions depending on whether
actions are observable or not.

Second, behavior is consistent with strategic free-riding, as information is a public
good and participants produce inefficiently little of it. In the bad-news environment,
participants experiment, on average, too little even when the efficient solution is an
equilibrium. For the good-news environment, we design a three-period game such that,
under either informational assumption, equilibrium always features underproduction
of information. Participants’ behavior is indeed characterized by too little experimen-
tation, especially when actions are observable.

The rest of the paper is organized as follows. Section 2 explains our environment
and design. Section 3 sets out our experimental implementation and presents ourmain
findings. Section 4 introduces the good-news game and presents its analysis. This is
followed by an econometric robustness test, which is presented in Section 5. Section
6 explains our theoretical frameworks in detail. Section 7 offers a discussion on eco-
nomic significance, reviews some additional related literature and concludes with some
thoughts on free-riding on information.

2 The Bad-News Environment
In this section, we provide a brief description of our theoretical framework to build in-
tuition and to guide our experimental design, identification strategy, and econometric
analysis. A complete formal analysis of the game will be provided in Section 6.

2.1 The Design
The game is played over three periods 𝑡 = 1, 2, 3. If the safe arm is used, the payoff
will be 0 for certain in that period. Using the risky arm entails a benefit of 𝑠 = 2, 857
(Experimental $). The risky arm is either good or bad, its type remaining constant over
the three periods of the game. If it is good, its use never imposes a cost. If it is bad, it
imposes a cost of 20,000 with a probability of 𝜆 = 1/4 in any period it is used; condi-
tionally on the risky arm’s type, the draws are i.i.d. between players and across periods.
Players do not initially know if the risky arm is good or bad; they know that Nature
(or the computer) makes the risky arm bad with a probability of 𝑝0 = 0.676392. After
a breakdown is observed, the risky arm is known to be bad with probability 1. In the
absence of a breakdown and 𝑛 successful tries of the risky arm, Bayes’ rule implies that
an observer knowing this information should hold the belief 𝑝𝑛 = 𝑝0(1−𝜆)𝑛

𝑝0(1−𝜆)𝑛+1−𝑝0
that the

risky arm is bad; i.e., observing that the risky arm has been used without a breakdown
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makes players increasingly optimistic about the quality of the risky arm. Thus, the up-
dated posterior belief either jumps to 1 in case of a breakdown, or declines with the
number of unsuccessful tries 𝑛. Arm types are i.i.d. across games. One player’s risky
arm is good if and only if the other one’s is as well. In the treatment with observable ac-
tions, a player observes all of the other player’s previous actions as well as the outcomes
of these actions. In the treatment with unobservable actions, a player observes only if
the other player has suffered a breakdown of 20,000 from the risky arm or not.

Our (admittedly somewhat buckled) numerical values allow us to make stark theo-
retical predictions. One computes that the solution maximizing the sum of the players’
payoffs has both players playing risky in the first period, and continuing to play risky in
the subsequent periods unless and until a breakdown occurs. Clearly, in equilibrium,
once a player knows the risky arm to be bad because they have observed a breakdown,
they will use the safe arm in all subsequent periods, as is efficient. Furthermore, one
verifies by backward induction that, with unobservable actions, the only equilibrium is
for both players always to play safe.1 With observable actions, however, while always
playing safe remains an equilibrium, the efficient solution is an equilibrium as well.
This latter equilibrium is sustained by the threat of the other player switching to always
playing safe if one player unilaterally deviates to playing safe in the first period, and
thus requires that actions be observable.
Implications for Behavior Consequently, our behavioral hypotheses are as follows:

• We observe efficient behavior more often with observable than with unobserv-
able actions.

• Participants use the risky arm more when actions are observable.
• Participants’ payoffs are higher when actions are observable.
• Updating of beliefs: Conditionally on no breakdown having occurred, partici-

pants use the risky arm more in later periods.

3 The Experiment

3.1 Organization
We conducted all experiments in the months of July to November 2023 at the Univer-
sity of Vienna. Participants were recruited from the Vienna Center for Experimental
Economics (VCEE) subject pool using ORSEE (Greiner 2015). No one participated
in more than one session. During the experiments, participants could contact an ex-
perimenter anytime for assistance. After reading the instructions, participants had to
correctly answer several comprehension questions before starting the main part of the
experiment. The experiment was programmed in oTree (Chen, Schonger, andWickens
2016). We recruited 104 participants and all payments were made in cash. The aver-
age participant earned approximately €10.57 from one randomly selected game and all
payments were in Euros. The instructions and experimental interface are reproduced
in the online appendix.

1See Section 6 for details.
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3.2 Implementation
In order to increase the computational efficiency of the implementation and to in-
crease control, we had simulated all the relevant parameters ahead of time. As all our
stochastic processes are Bernoulli processes, simulating their realizations ahead of time
is equivalent to simulating them as the game progresses. These included separate pro-
cesses for the quality of the risky arm and the timing of breakdowns on the risky arm in
case it was bad.2 We generated 25 different sets of realizations of the random parame-
ters controlling the quality of the risky arm and the arrivals of the bad risky arm. These
corresponded to 25 different games that each of our participants played. To make our
findings more easily comparable, we have kept the same realizations for both observ-
able and hidden actions. Participants were randomly assigned to groups of two players
and randomly rematchedwithin amatching group of six to eight participants after each
game. Each participant was randomly assigned either to the treatment with observable
or hidden actions, and played the 25 games in random order. To ensure a balanced
data-collection process, we replicated any order of the 25 games that was used for a
matching group in the treatment with observable actions for a matching group in the
treatment with unobservable actions. Participants could see their fellow group mem-
bers’ action choices and payoffs, depending on the randomly assigned treatment, on
their computer screens. Figure 1 shows how information was displayed, observable
actions being illustrated at the top and unobservable actions—“the ugly”—being high-
lighted at the bottom.

Figure 1: Bad News – Experimental Implementation

3.3 Experimental Results
This section is dedicated to examining the implications for behavior as detailed in Sec-
tion 2.1. For each of the 25 games, we implemented two treatments, actions being either
observable or unobservable, within two-player groups, comprising 52 groups in total.

2Details are available upon request.
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These groups were randomly re-matched within a matching group after each game; all
relevant parameters were simulated in advance.

We divide our analysis into four distinct sections. Initially, we provide summary
statistics, highlighting both the average intensity of experimentation and the overall
group payoffs. Following this, our primary analysis examines the aggregate experimen-
tal outcomes, with an initial focus on the distribution patterns of experimentation in-
tensities and group payoffs. Subsequently, we assess efficiency by comparing observed
behavior to the theoretical efficient solution. In addition, we study how behavior re-
lates to our theoretical predictions, in particular the consistency with equilibrium. The
final part of our analysis examines the evolution of behavior over time, specifically how
participants adjust their action choices in games where no breakdowns occur. To en-
hance the robustness of our findings, we include a robustness test, utilizing ordinary
least squares (OLS) regressions with random effects and clustering of standard errors
at the matching-group level. These results are reported in Section 5. Our results show
that the number and order of games previously played by participants does not signifi-
cantly influence their behavior, thereby affirming the robustness of our findings across
the study.

Experimentation and Payoffs
As outlined in Section 2.1, we anticipate that average experimentation intensities and
group payoffs would be higher in the treatment wheremonitoring by others is possible.
Recall that experimentation intensity for each player is measured up until the moment
a first breakdown occurs to any player in the group. Table I presents the observed
mean experimentation intensities and the average total payoffs, calculated using group
averages across all games for both treatments.

Table I: Bad News – OLS Estimations

Experimentation Intensity Payoffs

Intercept 0.602∗∗∗ 1085.255∗∗∗

(0.044) (298.817)
Public 0.153∗∗∗ 2716.357∗∗∗

(0.052) (418.066)
N 1300 1300

R-squared 0.074 0.013
For all estimations, robust standard errors are clustered at the matching-group level and shown in

brackets.

We observe a pronounced positive impact of action observability on both exper-
imentation intensity and payoffs. Specifically, participants pull the risky arm consid-
erably more often when monitoring is feasible, resulting in markedly higher payoffs at
the group level.

Extending our analysis beyondmere point estimates, Figure 2 illustrates the empir-
ical distribution of experimentation intensities and group payoffs with the best fitting
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normal Gaussianmodel being superimposed over the sample cumulative density func-
tion across the different treatments.

The sample cumulative distribution functions for experimentation intensity and payoffs are shown, by
information condition. The best fitting normal (Gaussian) model is

superimposed over the sample CDF.

Figure 2: Bad News – Empirical CDFs of Experimentation Intensity and Payoffs

Both experimentation intensities and group payoffs significantly exhibit stochas-
tic dominance in the treatment with observable actions over the treatment where ac-
tions are unobservable. This difference is statistically significant, as demonstrated by
Kolmogorov-Smirnov tests, which yield 𝑝-values of 0.001.

We summarize these findings in the following:
Experimentation Participants use the risky arm more when actions are observable.
Payoffs Group payoffs are higher when actions are observable.

Efficiency Benchmark
To assess the efficiency of participants’ behavior, our analysis concentrates on games
where no breakdown was suffered during the three interaction periods. In the treat-
ment where actions are observable, the average experimentation intensity stands at
0.762 (with a standard deviation of 0.256, N=312), significantly deviating from the the-
oretical efficient solution of 1. Out of 312 observations, 137 are in alignment with the
efficient solution. Conversely, for games with unobservable actions, the average ex-
perimentation intensity with 0.591 and a standard deviation of 0.285 for N=312 is also
significantly different from the efficient solution, and only 58 of 312 observations di-
rectly coincide with the efficient solution.
Efficiency Participants free-ride, i.e., they use the risky arm less than what would be
efficient with either observable or unobservable actions.
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Consistency of Behavior with Equilibrium
Here too, our analysis focuses on the 312 games where no breakdown was suffered
during the three interaction periods. In Figure 3, we highlight the observed risky play
for each treatment separately, providing a detailed view of how behavior is associated
with equilibrium play. In particular, we plot the fraction of games in which risky was
played 𝑟 times divided by the number of periods 𝑡 multiplied by the number of players
𝑛, i.e., 𝑟

𝑡×𝑛 .

The experimentation intensity in games without breakdowns is shown, by information condition.

Figure 3: Bad News – Experimentation Intensity

When actions are observable, 146 of 312 games are consistent with equilibrium;
among these, the overwhelming majority, namely 137 games, coincide with the effi-
cient solution. By contrast, with hidden actions, play that is consistent with the—now
smaller—equilibrium set significantly decreases, with only 32 of 312 in line with the
theoretical prediction. Unsurprisingly, the difference in equilibrium play by treatment
is highly statistically significant with 𝑝-values of 0.001 for both a t-test and a two-sided
Wilcoxon rank-sum test.

This leads to the following:
Equilibrium Behavior is more often consistent with equilibrium when actions are
observable.

Dynamic Evolution of Behavior
We now shift our focus to the dynamics of observed behavior. We are particularly in-
terested in whether, consistently with Bayesian updating, participants increase their
use of the risky arm as the game progresses. Our attention remains on games where
no breakdown is incurred throughout the three periods of interaction. In Figure 4, we
graph the observed experimentation intensities for each period and treatment sepa-
rately, providing a detailed view of how behavior evolves over the course of the game.
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The average experimentation intensity over time in games without breakdowns is shown, by
information condition.

Figure 4: Bad News – Experimentation Intensity over Time

While it is unrealistic to expect our participants to calculate posterior beliefs pre-
cisely using Bayes’ rule, we nevertheless anticipate that, in the absence of a breakdown,
participants will increasingly use the risky arm as the game progresses, reflecting grow-
ing optimism. At the beginning of a game without any breakdowns, participants are
indeed significantly less likely to choose the risky arm than in later periods. To exam-
ine changes in behavior over time, we employ two-sided t-tests for parametric analysis
and two-sided Wilcoxon rank-sum (Mann-Whitney) tests for non-parametric analy-
sis, treating group averages as independent observations. Regardless of whether actions
were observable, we find that the differences in experimentation intensities across time
are highly statistically significant when comparing behavior in the very first period to
those in either the second or the last period, with 𝑝-values in both treatments for ei-
ther test being less than 0.050. In the treatment with observable actions, t-tests (two-
sided Wilcoxon rank-sum tests) produce 𝑝-values of 𝑝12 = 0.004 (0.009), 𝑝13 = 0.015
(0.049), and 𝑝23 = 0.759 (0.515), where 𝑝𝛼𝛽 is the 𝑝-value from comparing periods 𝛼
vs. 𝛽. With unobservable actions, by contrast, we find 𝑝-values of 𝑝12 = 0.001 (0.002),
𝑝13 = 0.002 (0.003), and 𝑝23 = 0.546 (0.987), respectively.

Additionally, we also analyze mean experimentation intensities across treatments
for each period. As illustrated in Figure 2, participants engage with the risky arm more
frequently when actions are observable. The differences in all periods are highly statis-
tically significant, with 𝑝-values of 0.001 for both tests.

We summarize these results as follows:
Belief Updating Conditionally on no breakdown having occurred, participants use
the risky arm more in later periods.
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4 The Good-News Environment
In the previous section, we have seen that experimentation intensity and payoffs are
significantly higher with public information. Our game’s equilibrium set is larger, con-
taining the efficient solution, when actions are observable; by contrast, never using the
risky arm is the only equilibriumwith unobservable actions. We have indeed calibrated
the parameters of our game in such a way as to generate stark theoretical predictions
illustrating the impact of the informational setting on behavior, which is known from
continuous-time theory, in the starkest possible way. So, in a way, we have stacked
the cards in our favor. In this section, we report on an experiment, where, in a sense,
we do the mirror opposite: We look at a three-period game in the good-news setting,
choosing very simple numerical values for the parameters that additionally have the
property that there is no difference in equilibrium predictions depending on whether
actions are observable or not, so as to understand whether the differences in behavior
between the informational settings depend on whether they are predicted by (perfect
Bayesian) equilibrium in the particular game, or whether it is a more general feature of
behavior. Information now arrives through fully revealing, publicly observable, break-
throughs instead of breakdowns. Recall from our discussion in the Introduction that,
in a continuous-time, infinite-horizon setting, private information is good for welfare
in a conclusive good-news game (Bonatti and Hörner 2011). We are thus, in the main,
interested in whether participants will free-ride more, and therefore achieve lower av-
erage payoffs, when actions are observable, even though this is not a feature of perfect
Bayesian equilibrium.

In the following subsection, we provide a brief description of our theoretical frame-
work, relegating a complete formal analysis to Section 6.

4.1 The Design
The game is played over three periods 𝑡 = 1, 2, 3. If the safe arm is used, the payoff will
be 0 for certain in that period. Using the risky arm entails a cost of 𝑠 = 25 (Experimental
$). The risky arm is either good or bad, its type remaining constant over the three
periods of the game. If it is bad, it never yields a positive payoff. If it is good, it pays out
a lump sum of 100 with a probability of 𝜆 = 1/2 in any period it is used; conditionally
on the risky arm’s type, the draws are i.i.d. between players and across periods. Players
do not initially know if the risky arm is good or bad; they know that Nature (or the
computer) makes the risky arm good with a probability of 𝑝0 = 3/4. After a success is
observed, the risky arm is known to be good with probability 1. In the absence of a
success and 𝑛 unsuccessful tries of the risky arm, Bayes’ rule implies that an observer
knowing this information should hold the belief 𝑝𝑛 = 𝑝0(1−𝜆)𝑛

𝑝0(1−𝜆)𝑛+1−𝑝0
that the risky arm is

good. Note that 𝑝𝑛 is strictly decreasing in 𝑛. Thus, the updated posterior belief either
jumps to 1 in case of a success, or declines with the number of unsuccessful tries 𝑛. Arm
types are i.i.d. across games. One player’s risky arm is good if and only if the other one’s
is as well. In the treatment with observable actions, a player observes all of the other
player’s previous actions as well as the outcomes of these actions. In the treatment with
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unobservable actions, a player observes only if the other player has received the reward
of 100 from the risky arm or not.

One computes that the solutionmaximizing the sumof the players’ payoffs has both
players playing risky in the first two periods, and safe in the last (conditionally on no
breakthrough having occurred). As ours is a game of purely informational externalities,
we should expect players to use the risky arm too little in equilibrium, as a player will
not take into account that the information they produce (at a private cost) benefits
the other player as well. Clearly, in equilibrium, once a player knows the risky arm
to be good because they have observed a success, they will use the risky arm in all
subsequent periods, as is efficient. Furthermore, one verifies by backward induction
that in equilibrium both players play risky in the first period. Then, in the second
period, exactly one player will play risky, provided no breakthrough has been observed
in the first period. In the third period, conditionally on no breakthrough having arrived
yet, both players play safe.

Our theoretical analysis thus leads us to the following behavioral hypotheses. For
one, we expect players to be free-riding, i.e., to use the risky arm less than what would
maximize the sum of their payoffs. This is because a player has to bear the full cost of
experimenting with the risky arm, while sharing the benefits of the information gen-
erated. Consequently, we should expect average payoffs to be lower than in the effi-
cient solution. Even though this is not a feature of the equilibrium set, we furthermore
hypothesize that participants will free-ride more, and therefore achieve lower average
payoffs, when actions are observable. Furthermore, while it would be unrealistic to
presume that our participants could compute posterior beliefs 𝑝𝑛 precisely via Bayes’
rule, we hypothesize that (in the absence of a breakthrough) players will use the risky
arm less as time progresses.
Implications for Behavior Therefore, our behavioral hypotheses are as follows:

• Participants use the risky arm less than what would be efficient.
• Participants use the risky arm less when actions are observable (although not an

equilibrium feature).
• Participants’ payoffs are lower when actions are observable (although not an

equilibrium feature).
• Updating of beliefs: Conditionally on no breakthrough having been achieved,

participants use the risky arm less in later periods.

4.2 Experiment Details
We collected data from another 110 participants who were also recruited from the Vi-
enna Center for Experimental Economics (VCEE) subject pool using ORSEE (Greiner
2015). The average participant earned approximately €15.01 from one randomly se-
lected game. All payments were made in Euros and in cash. As before, we had sim-
ulated all the relevant parameters ahead of time as all our stochastic processes are
Bernoulli processes. These included separate processes for the quality of the risky arm
and the timing of breakthroughs on the risky arm in case it was good. We generated
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25 different sets of realizations of the random parameters controlling the quality of the
risky arm and the arrivals of the good risky arm. These corresponded to 25 different
games that each of our participants played. As before, in order to make our findings
more easily comparable, we have kept the same realizations for both observable and
hidden actions. Participants were randomly assigned to groups of two players and ran-
domly rematched within a matching group of six to eight participants after each game.
Each participant was randomly assigned either to the treatment with observable or hid-
den actions, and played the 25 games in random order. We again ensured a balanced
data-collection process by replicating any order of the 25 games that was used for a
matching group in the treatment with observable actions for a matching group in the
treatment with unobservable actions. Participants could see their fellow group mem-
bers’ action choices and payoffs, depending on the randomly assigned treatment, on
their computer screens. In our experimental implementation, we attempted to keep
the good-news environment as close as possible to our bad-news environment. In the
good-news environment, the experimental implementation was similar with the differ-
ence that we implemented a “party emoji” GIF for breakthroughs instead of the “cry-
ing emoji” GIF in the bad-news environment. Similarly, we displayed a “sad emoji” in
the good-news environment instead of the “happy emoji” in the bad-news environment
when a participant had pulled unsuccessfully the risky arm.3 Figure 5 shows how infor-
mation was displayed, observable actions being illustrated at the top and unobservable
actions—“the ugly”—being highlighted at the bottom.

Figure 5: Good News – Experimental Implementation

4.3 Experimental Results
This section is devoted to testing our behavioral hypotheses and the implications for
behavior outlined in Section 4.1. For each of the 25 games, we conducted two treat-

3The experimental instructions and interfaces can be found in the online appendix as well. The
dynamic interface can be accessed online upon request.
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ments (observable and unobservable actions with two-player groups), with 55 groups
in total that were randomly re-matched within a matching group after each game.

As before, to maintain consistency and ensure comparability, we break the analysis
into three sections. We start with presenting the summary statistics for both average
experimentation intensity and group payoffs. Then, we begin our main analysis by
presenting the aggregate experimental results focusing first on the distribution of the
experimentation intensity and group payoffs. Next, we focus on efficiency and study
how behavior relates to the efficient solution. Lastly, we delve into behavior over time,
in particular participants’ updating of beliefs in games where no breakthrough has oc-
curred. In Section 5, we complement our analysis of this section with a robustness test
by reporting results from OLS regressions with random effects and clustering of stan-
dard errors at the matching-group level. We find no effect of the number and order
of games previously played on participants’ behavior, and results reported throughout
the paper remain robust.

Experimentation and Payoffs
As we have argued in Section 4.1, we might expect average experimentation intensities
as well as (group) payoffs to be lower in the treatment when monitoring is feasible.
Recall that the experimentation intensity is calculated for each player until the time of
a first breakthrough by any player in a group or the end of the game, whichever arrives
first.

Table II: Good News – OLS Estimations

Experimentation Intensity Payoffs

Intercept 0.764∗∗∗ 54.037∗∗∗

(0.018) (3.960)
Public −0.078∗∗ −8.573∗

(0.028) (4.580)
N 1375 1375

R-squared 0.024 0.001
For all estimations, robust standard errors are clustered at the matching-group level and shown in

brackets.

Table II lists the observed mean experimentation intensities and average sum of
payoffs, using group averages across games for the two treatments. Thus, we find a
negative effect of the observability of actions on both experimentation intensity and
payoffs. This is the first piece of evidence that participants tend to shirk more when
it comes to the production of information when actions are observable. Participants
use the risky arm significantly less whenmonitoring is possible, leading to significantly
lower payoffs at the group level.

Moving beyond point estimates, Figure 6 plots the empirical distribution of exper-
imentation intensities and group payoffs with the best fitting normal Gaussian model
superimposed over the sample cumulative density function by treatment.
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The ample cumulative distribution functions for experimentation intensity and payoffs are shown, by
information condition. The best fitting normal (Gaussian) model is

superimposed over the sample CDF.

Figure 6: Good News – Empirical CDFs of Experimentation Intensity and Payoffs

While the effect of monitoring is less nuanced when it comes to payoffs compared
to experimentation intensities, both measures of interest are significantly higher in
stochastic dominance in the treatment with unobservable actions than in the treatment
with observable actions: Kolmogorov Smirnov tests produce 𝑝-values of 0.001.

We summarize our findings in the following:
Experimentation Participants use the risky arm less when actions are observable.
Payoffs Group payoffs are lower when actions are unobservable.

Efficiency Benchmark
To investigate whether participants behaved efficiently, we focus on games in which
no breakthrough occurs over the three periods of interaction. For observable actions,
the average experimentation intensity with 0.542 (with a standard deviation of 0.199,
N=196) is significantly different from the planner’s solution of 2/3. 25 of 196 observa-
tions are compatible with the efficient solution. For unobservable actions, by contrast,
the average experimentation intensity coincides with the efficient solution (with a stan-
dard deviation of 0.184, N=184), while only 22 out of 189 observations coincide with
the efficient solution.

This leads us to state the following:
Efficiency Participants use the risky arm less than what would be efficient only with
observable actions. By contrast, when actions are unobservable the average experi-
mentation intensity coincides with the efficient solution.
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Dynamic Evolution of Behavior
We now turn to the dynamics of observed behavior. In particular, we are curious to
see whether participants use the risky arm less as the game progresses. Here again, we
focus on games in which no breakthrough occurs over the three periods of interaction.
In Figure 7, we plot the observed experimentation intensity period-by-period and for
each treatment separately.

The average experimentation intensity over time in games without breakthroughs are shown, by
information condition.

Figure 7: Good News – Experimentation Intensity over Time

Obviously, we do not expect that participants compute posterior beliefs𝑝𝑛 precisely
via Bayes’ rule; however, we would expect that, in the absence of a breakthrough, par-
ticipantswill use the risky arm less as time progresses as they gradually growpessimistic
over time.

To test for differences over time parametrically, we apply two-sided t-tests and to
test for differences non-parametrically, we apply two-sidedWilcoxon rank-sum (Mann-
Whitney) tests, using group averages as independent observations. Irrespective of the
observability of actions, the differences in experimentation intensities are highly sta-
tistically significant. The corresponding 𝑝-values in both cases are 0.001. At the outset
of a given game without any breakthrough, participants use the risky arm significantly
more often compared to later periods, the largest drop of experimentation being ob-
served in the very last period of the game.

In addition, we also compare mean experimentation intensities across treatments
period-by-period. As can be seen in Figure 7, participants use, on average, the risky
armmore frequently in the treatmentwith unobservable actions. Differences are highly
statistically significant in the last two periods with 𝑝-values of 0.001 for either test. In
the very first period, differences are significant at the 5%-level, the t-test (Wilcoxon
rank-sum test) produces a 𝑝-value of 0.022 (0.029).

We summarize these results as follows:
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Belief Updating Conditionally on no breakthrough having been achieved, partici-
pants use the risky arm less in later periods.

5 Econometric Robustness Tests
As a further robustness test and to complement our previous analyses and key ele-
ments discussed so far in Sections 2, 3, and 4, we run ordinary least-square regressions
with random effects controlling for learning effects. In particular, we regressed exper-
imentation intensity and individual payoffs on the treatment dummy Public, which is
0 for the private information treatment and 1 for the public information treatment.
Recall that participants played the 25 games in random order and any order of these
games that was used for participants in the public information sessions was replicated
for participants in the private information sessions. In order to verify that participants
treated the games they successively played as independent games rather than as parts
of a larger super-game, we define a weighted learning function {𝑔𝑜} = {1/𝑜} where 𝑜
(𝑜 ∈ {1,⋯ , 25}) corresponds to the random order in which each participant was ex-
posed to each game. All regressions control for trends over time using this weighted
learning function. The results do not qualitatively change when we replace the learning
function with a linear version such that {𝑔𝑜} = {𝑜}. Further, the results do not qualita-
tively change either when we include controls for age, gender, field of study as well as
attempts needed to correctly answer the quiz questions at the start of the experiment.
To account for the fact that behavior within matching groups is not independent, we
treat each matching group as our units of statistically independent observations and
cluster standard errors by matching group. Table III lists the results from this analysis
where Panel A shows the results for the bad-news environment and Panel B displays
the results for the good-news environment.

In the bad-news environment, we find a strong positive effect of public information
on experimentation intensity across all games, games with and without breakdowns,
and payoffs. By contrast, in the good-news environment, we find a strong negative effect
of public information on experimentation intensity across all games, games with and
without breakthroughs, and payoffs.
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Table III: OLS Estimations with Random Effects of
Experimentation Intensity and Payoffs.

Experimentation Intensity Individual
All No Breakdown Until Breakdown Payoffs

or Breakthrough or Breakthrough

Panel A: The Bad-News Environment

Intercept 0.595∗∗∗ 0.584∗∗∗ 0.612∗∗∗ 406.154
(0.046) (0.050) (0.045) (285.930)

Public 0.158∗∗∗ 0.170∗∗ 0.139∗∗ 1368.876∗∗∗

(0.062) (0.069) (0.059) (216.667)
Learning 0.033 0.045 0.015 793.306

(0.031) (0.030) (0.058) (1545.339)
𝜎𝜖 0.291 0.269 0.306 8583.367
𝜎𝑢 0.216 0.216 0.218 0
N 2600 1248 1352 2600
(Between) R-squared 0.113 0.124 0.082 0.187

Panel B: The Good-News Environment

Intercept 0.764∗∗∗ 0.662∗∗∗ 0.798∗∗∗ 27.643∗∗∗

(0.017) (0.025) (0.018) (2.154)
Public −0.076∗∗∗ −0.124∗∗∗ −0.059∗ −4.286∗

(0.028) (0.034) (0.031) (2.291)
Learning 0.027 0.020 0.033 -4.090

(0.037) (0.027) (0.056) (10.781)
𝜎𝜖 0.306 0.222 0.316 79.642
𝜎𝑢 0.135 0.162 0.134 0
N 2750 770 1980 2750
(Between) R-squared 0.063 0.107 0.037 0.043

For all estimations, robust standard errors are clustered at the session level and shown in brackets.
∗∗∗Significant at the 1 percent level; ∗∗Significant at the 5 percent level; ∗Significant at the 10 percent

level

6 Theoretical Analysis
In Sections 2.1 and 4.1, we provided intuitive explanations for our identification strat-
egy. In this section, we elaborate and present a formal analysis.
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6.1 The Bad-News Environment
The solution concept is that of perfect Bayesian equilibrium.4 Sequential rationality
is verified by backward induction. After a breakdown has been publicly observed, the
risky arm is known to be bad, so that playing safe is the dominant action. Subsequently,
we thus verify sequential rationality conditionally on no breakdown having been ob-
served. We apply backward induction to this purpose, and normalize the cost of a
breakdown to 1.5 We write 𝑝𝑖(𝑡 = 𝜏) ≡ 𝑝𝑛 for player 𝑖’s Bayesian belief in period
𝜏 ∈ {1, 2, 3}, if 𝑛 = ∑𝜏−1

𝑧=1(𝑘𝑖,𝑧 + �̂�−𝑖,𝑧), where we write 𝑘𝑞,𝑧 = 1 (𝑘𝑞,𝑧 = 0) if player
𝑞 ∈ {𝑖, −𝑖} has used the risky (safe) arm in period 𝑧 without provoking a breakdown,
and �̂�−𝑖,𝑧 denotes the action that player 𝑖 thinks that player −𝑖 has taken in period 𝑧. In
the case of observable actions, �̂�−𝑖,𝑧 ≡ 𝑘−𝑖,𝑧; in the case of unobservable actions, �̂�−𝑖,𝑧 is
pinned down by player 𝑖’s expectations, which are correct in equilibrium.

In the last period 𝑡 = 3, players face amyopic decision problem, where playing risky
is a best response if and only if 𝑝(𝑡 = 3)𝜆 ≤ 𝑠. For our parameters, 𝑝𝑛𝜆 < 𝑠 if and only
if 𝑛 ≥ 2.

Indeed, 𝑝2𝜆 < 𝑠 implies that, after a history of two tries without a breakdown, play-
ing risky becomes a dominant action. This pins down play in all equilibrium candidates
in which 𝑘𝑖,1 + 𝑘−𝑖,1 = 2.

Now, let us assume that 𝑘𝑖,1+𝑘−𝑖,1 = 1. Suppose that 𝑘−𝑖,2 = 1 (so that 𝑘𝑖,3+𝑘−𝑖,3 = 2).
In this case, 𝑘𝑖,2 = 1 is a best response if and only if

𝑠 − 𝑝1𝜆 + (1 − 𝑝1 + 𝑝1(1 − 𝜆)2)𝑠 − 𝑝1𝜆(1 − 𝜆)2 ≥? (1 − 𝑝1 + 𝑝1(1 − 𝜆))𝑠 − 𝑝1𝜆(1 − 𝜆)

⟺ 𝑝1 ≤! 𝑠
𝜆

1
1 − (1 − 𝜆)(𝜆 − 𝑠) ,

which holds for our parameters. Thus, 𝑘𝑖,2 +𝑘−𝑖,2 = 2 is incompatible with equilibrium,
whether actions be observable or unobservable.

Next, let us assume that 𝑘−𝑖,2 = 0. If actions are observable, 𝑘𝑖,2 = 1 will induce
𝑘𝑖,3 + 𝑘−𝑖,3 = 2, and 𝑘𝑖,2 = 0 will induce 𝑘𝑖,3 = 𝑘−𝑖,3 = 0. Thus, 𝑘𝑖,2 = 1 is a best response
if and only if

𝑠 − 𝑝1𝜆 + (1 − 𝑝1𝜆)𝑠 − 𝑝1𝜆(1 − 𝜆) ≥? 0

⟺ 𝑝1 ≤? 𝑠
𝜆

2
2 − (𝜆 − 𝑠) ,

which is not satisfied for our parameters. Thus, 𝑘𝑖,2 = 0 is the unique best response to
𝑘−𝑖,2 = 0 if actions are observable, inducing 𝑘𝑖,3 = 𝑘−𝑖,3 = 0. Now suppose that actions
are unobservable. We have already shown that 𝑘𝑖,2 = 1 (inducing 𝑘𝑖,3 = 𝑘−𝑖,3 = 1)
cannot happen on the equilibrium path. Now, 𝑘𝑖,2 = 𝑘−𝑖,2 = 𝑘𝑖,3 = 𝑘−𝑖,3 = 0 can be part
of an equilibrium if and only if

0 ≥? 𝑠 − 𝑝1𝜆 + (1 − 𝑝1𝜆)𝑠 − 𝑝1𝜆(1 − 𝜆)
4Subgame perfection has no bite as an equilibrium refinement, because the game starts with an initial

move of Nature, which determines the quality of the risky arm; the game therefore admits of no proper
subgames.

5For our parameters, this implies that 𝑠 = 0.142857. Recall furthermore that 𝜆 = 1/4, and 𝑝0 =
0.676392.
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⟺ 𝑝1 ≥! 𝑠
𝜆

2
2 − (𝜆 − 𝑠) ,

which is satisfied for our parameters, as we have seen.
Thus, in conclusion, after a history such that 𝑘𝑖,1+𝑘−𝑖,1 = 1, both 𝑘𝑖,2 = 𝑘−𝑖,2 = 𝑘𝑖,3 =

𝑘−𝑖,3 = 0 and 𝑘𝑖,2 = 𝑘−𝑖,2 = 𝑘𝑖,3 = 𝑘−𝑖,3 = 1 are compatible with equilibrium, whether
actions are observable or unobservable. It is this non-uniqueness of equilibrium play
after histories 𝑘𝑖,1 + 𝑘−𝑖,1 = 1, which stands in contrast to our good-news game, and
whichwill lead to different first-period equilibrium predictions, depending onwhether
actions are observable or unobservable, as we shall see below.

Let us turn to histories such that 𝑘𝑖,1 = 𝑘−𝑖,1 = 0. Clearly, 𝑘−𝑖,2 = 𝑘𝑖,3 = 𝑘−𝑖,3 = 0,
while 𝑘𝑖,2 = 1 is not compatible with equilibrium, because 𝑠 − 𝑝0𝜆 < 0 implies that 𝑖
has an incentive to deviate to 𝑘𝑖,2 = 0. Can 𝑘𝑖,2 = 𝑘−𝑖,2 = 𝑘𝑖,3 = 𝑘−𝑖,3 = 1 occur in
equilibrium? If actions are observable (unobservable), a deviation by player 𝑖 in 𝑡 = 2
leads to a path of play of 𝑘𝑖,2 = 𝑘𝑖,3 = 𝑘−𝑖,3 = 0, with 𝑘−𝑖,2 = 1 (𝑘𝑖,2 = 𝑘𝑖,3 = 0, with
𝑘−𝑖,2 = 𝑘−𝑖,3 = 1), giving the deviator 𝑖 a payoff of 0 in both cases; such a deviation is
therefore profitable if and only if

0 >? 𝑠 − 𝑝0 + (1 − 𝑝0 + 𝑝0(1 − 𝜆)2)𝑠 − 𝑝0(1 − 𝜆)2𝜆

⟺ 𝑝0 >! 𝑠
𝜆

2
1 + 𝑠(2 − 𝜆) + (1 − 𝜆)2 ,

which holds for our parameters. The only equilibrium candidate remaining is thus
𝑘𝑖,2 = 𝑘−𝑖,2 = 𝑘𝑖,3 = 𝑘−𝑖,3 = 0; this clearly is compatible with equilibrium as 𝑠 − 𝑝0𝜆 < 0.

Let us now move to the first period 𝑡 = 1, and assume that actions are observable.
By our previous analysis, there are four equilibrium candidates: (1.) the utilitarian
optimum, namely 𝑘𝑖,1 = 𝑘−𝑖,1 = 𝑘𝑖,2 = 𝑘−𝑖,2 = 𝑘𝑖,3 = 𝑘−𝑖,3 = 1, (2.) 𝑘𝑖,1 = 𝑘𝑖,2 = 𝑘−𝑖,2 =
𝑘𝑖,3 = 𝑘−𝑖,3 = 1 and 𝑘−𝑖,1 = 0, (3.) 𝑘𝑖,1 = 𝑘−𝑖,1 = 𝑘𝑖,2 = 𝑘−𝑖,2 = 𝑘𝑖,3 = 𝑘−𝑖,3 = 0, and (4.)
𝑘−𝑖,1 = 𝑘𝑖,2 = 𝑘−𝑖,2 = 𝑘𝑖,3 = 𝑘−𝑖,3 = 0, while 𝑘𝑖,1 = 1. Candidate (4.) can be ruled out
right away, as 𝑠 −𝑝0𝜆 < 0, so that player 𝑖 has an incentive to deviate in the first period,
whether actions are observable or unobservable.

Let us turn to candidate (1.). With observable actions, a unilateral deviation by 𝑖
in the first period can be “punished” with the continuation equilibrium 𝑘𝑖,2 = 𝑘−𝑖,2 =
𝑘𝑖,3 = 𝑘−𝑖,3 = 0, making the deviation unprofitable; indeed, in the absence of a devia-
tion, players get the utilitarian optimum, which is strictly greater than 0, whereas, by
deviating, 𝑖 receives 0. For unobservable actions, however, this “punishment equilib-
rium” is not available, and (1.) is an equilibrium if and only if

𝑠 − 𝑝0𝜆 − 2𝑝0𝜆(1 − 𝜆)𝑠 + 𝑝0𝜆(1 − 𝜆)(𝑠 + 𝜆) + 𝑝0𝜆(1 − 𝜆)3(𝜆 − 𝑠) ≥? 0

⟺ 𝑝0𝜆[1 − (−𝜆)(𝜆 − 𝑠)(1 + (1 − 𝜆)2)] ≤? 𝑠,
which is violated for our parameters. Therefore, the utilitarian optimum (1.) is an
equilibrium if and only if actions are observable.

Next, let us analyze candidate (2.). If actions are observable (unobservable), a first-
period deviation by player 𝑖 who is supposed to play risky in that period leads to play

20



of 𝑘𝑖,1 = 𝑘−𝑖,1 = 𝑘𝑖,2 = 𝑘−𝑖,2 = 𝑘𝑖,3 = 𝑘−𝑖,3 = 0 (𝑘𝑖,1 = 𝑘−𝑖,1 = 𝑘𝑖,2 = 𝑘𝑖,3 = 0, with
𝑘−𝑖,2 = 𝑘−𝑖,3 = 1). In either case, this deviation is profitable if and only if

0 >? 𝑠 − 𝑝0𝜆 + (1 − 𝑝0𝜆)𝑠 − 𝑝0(1 − 𝜆)𝜆 + (1 − 𝑝0 + 𝑝0(1 − 𝜆)3)𝑠 − 𝑝0(1 − 𝜆)3𝜆,

which holds for our parameters. Thus, candidate (2.) is eliminated, whether actions be
observable or unobservable.

Finally, let us turn to candidate (3.). If actions are observable, a first-period devi-
ation leads to play of either 𝑘𝑖,1 = 1, with 𝑘−𝑖,1 = 𝑘𝑖,2 = 𝑘−𝑖,2 = 𝑘𝑖,3 = 𝑘−𝑖,3 = 0 or
𝑘−𝑖,1 = 0 𝑘𝑖,2 = 𝑘−𝑖,2 = 𝑘𝑖,3 = 𝑘−𝑖,3 = 0. In the latter case, the deviation is unprofitable as
𝑠 − 𝑝0𝜆 < 0; in the former, it is unprofitable by the same argument as in the previous
paragraph. With unobservable actions, deviating in only one period is unprofitable as
𝑠 − 𝑝0𝜆 < 0. A deviation to 𝑘𝑖,1 = 𝑘𝑖,2 = 𝑘𝑖,3 = 1 is profitable if and only if

0 <? 𝑠 − 𝑝0𝜆 + (1 − 𝑝0 + 𝑝0(1 − 𝜆))[𝑠 − 𝑝1𝜆 + (1 − 𝑝1 + 𝑝1(1 − 𝜆))𝑠 − 𝑝1(1 − 𝜆)𝜆].

Yet, 𝑠 − 𝑝0𝜆 < 0, and, as we have shown above, 𝑠 − 𝑝1𝜆 + (1 − 𝑝1 + 𝑝1(1 − 𝜆))𝑠 − 𝑝1(1 −
𝜆)𝜆 < 0. We thus conclude that candidate (3.) is an equilibrium, whether actions be
observable or unobservable.

We summarize our findings in the following

Proposition 1. If actions are unobservable in our bad-news game, players uniquely al-
ways play safe in perfect Bayesian equilibrium. This remains an equilibrium with ob-
servable actions. With observable actions, the utilitarian optimum (in which players play
risky until a breakdown arrives) is an additional equilibrium, which is supported by the
threat of always playing safe in case of a deviation.

6.2 The Good-News Environment
We now turn to our good-news game. Sequential rationality is verified by backward
induction. In the subsequent calculations, we normalize the value of a breakthrough
success to 1. Clearly, playing risky is the dominant action after a breakthrough success
has been observed. Thus, in the following, assume that no success has been observed
yet. We shall write 𝑝𝑖(𝑡 = 𝜏) ≡ 𝑝𝑛 for player 𝑖’s Bayesian belief in period 𝜏 ∈ {1, 2, 3},
if 𝑛 = ∑𝜏−1

𝑧=1(𝑘𝑖,𝑧 + �̂�−𝑖,𝑧), where we write 𝑘𝑞,𝑧 = 1 (𝑘𝑞,𝑧 = 0) if player 𝑞 ∈ {𝑖, −𝑖} has—
unsuccessfully—used the risky (safe) arm in period 𝑧, and �̂�−𝑖,𝑧 denotes the action that
player 𝑖 thinks that player −𝑖 has taken in period 𝑧. In the case of observable actions,
�̂�−𝑖,𝑧 ≡ 𝑘−𝑖,𝑧; in the case of unobservable actions, �̂�−𝑖,𝑧 is pinned down by player 𝑖’s
expectations, which are correct in equilibrium.

In the last period 𝑡 = 3, players face amyopic decision problem, where playing risky
is a best response if and only if 𝑝(𝑡 = 3)𝜆 ≥ 𝑠. For our parameters, 𝑝𝑛𝜆 ≥ 𝑠 if and only
if 𝑛 ≤ 1.

Moving to the penultimate period 𝑡 = 2, our previous step implies that, after a
history in which both have unsuccessfully played risky in the first period, both players
will play safe in the last period in the absence of a success, since 𝑝(𝑡 = 3) ≤ 𝑝(𝑡 =
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2) = 𝑝2. Therefore, after both players have played risky in the first period, it is a best
response for player 𝑖 to play risky in 𝑡 = 2 if and only if

−𝑘𝑖,2𝑠 + 𝑝(𝑡 = 2)𝜆[𝑘𝑖,2(1 + 𝜆 − 𝑠) + �̂�−𝑖,2(1 − 𝜆𝑘𝑖,2)(𝜆 − 𝑠)] ≥ 0,

which is equivalent to

𝑝(𝑡 = 2) ≥ 𝑠
𝜆

1
1 + (1 − 𝜆�̂�−𝑖,2)(𝜆 − 𝑠)

.

For our parameters,6

𝑠
𝜆

1
1 + (1 − 𝜆)(𝜆 − 𝑠) > 𝑝2 > 𝑠

𝜆
1

1 + 𝜆 − 𝑠.

The first of these inequalities implies that the utilitarian optimum, which requires both
players to experiment in both periods 𝑡 = 1, 2, is not an equilibrium. Both inequalities
together imply that, if 𝑘𝑖,1 + 𝑘−𝑖,1 = 2, safe and risky are mutually best responses in
period 𝑡 = 2.

It remains to analyze best responses after such histories that 𝑘𝑖,1 + 𝑘−𝑖,1 < 2. If
𝑘𝑖,1 + 𝑘−𝑖,1 = 1, the previous analysis implies that equilibrium continuation play will be
one of the following: 𝑘𝑖,2 +𝑘−𝑖,2 = 2 or 𝑘𝑖,2 +𝑘−𝑖,2 = 1 (both followed by 𝑘𝑖,3 +𝑘−𝑖,3 = 0 in
the absence of a success). So suppose that 𝑘𝑖,2 = 1 and 𝑘−𝑖,2 = 0. As, for our parameters,
𝑝1 > 𝑠

𝜆 > 𝑠
𝜆

1
1+(1−𝜆)(𝜆−𝑠) , −𝑖 prefers to deviate to 𝑘−𝑖,2 = 1. Since this deviation does

not affect continuation play with observable actions, it remains a profitable deviation,
whether actions be observable or not. Let us thus turn to the possibility of 𝑘𝑖,2+𝑘−𝑖,2 = 0,
which would be followed by 𝑘𝑖,3 + 𝑘−𝑖,3 = 2. Suppose first that actions are observable.
In this case, either player 𝑖 prefers to bring his experimentation forward in time, as
𝑝1 > 𝑠

𝜆 , i.e., one verifies that 𝑖 prefers 𝑘𝑖,2 = 1 and 𝑘−𝑖,2 = 𝑘𝑖,3 + 𝑘−𝑖,3 = 0. If actions
are unobservable, the same deviation leads to 𝑘𝑖,2 = 1 leads to 𝑘−𝑖,2 = 𝑘𝑖,3 = 0, yet
𝑘−𝑖,3 = 1. Since −𝑖’s action choice in the last period does not impact 𝑖’s payoff, the
deviation remains profitable even if actions are unobservable. In contrast, 𝑘𝑖,2+𝑘−𝑖,2 = 2
(followed by 𝑘𝑖,2 + 𝑘−𝑖,2 = 0) is compatible with equilibrium as 𝑝1 > 𝑠

𝜆 > 𝑠
𝜆

1
1+(1−𝜆)(𝜆−𝑠) .

Thus, in summary, after a history such that 𝑘𝑖,1 + 𝑘−𝑖,1 = 1, equilibrium uniquely calls
for 𝑘𝑖,2 + 𝑘−𝑖,2 = 2, followed by 𝑘𝑖,3 + 𝑘−𝑖,3 = 0, irrespectively of whether actions are
observable or unobservable.

We are now ready to move up to the initial period 𝑡 = 1. By our preceding analysis,
there are three types of candidate equilibria, depending on the experimentation inten-
sity in the first period: (1.) 𝑘𝑖,1+𝑘−𝑖,1 = 2, followed by 𝑘𝑖,2+𝑘−𝑖,2 = 1, and 𝑘𝑖,3+𝑘−𝑖,3 = 0;
(2.) 𝑘𝑖,1 + 𝑘−𝑖,1 = 1, followed by 𝑘𝑖,2 + 𝑘−𝑖,2 = 2, and 𝑘𝑖,3 + 𝑘−𝑖,3 = 0; (3.) 𝑘𝑖,1 + 𝑘−𝑖,1 = 0,
followed by 𝑘𝑖,2+𝑘−𝑖,2 = 2, and 𝑘𝑖,3+𝑘−𝑖,3 = 0. One computes that, in candidate equilib-
rium (3.), a player wants to deviate to playing risky in the first period, thereby inducing
play according to candidate (2.), if and only if

−𝑠 + 𝑝0𝜆(1 + 2(𝜆 − 𝑠)) − (1 − 𝑝0𝜆)𝑠 + 𝑝0𝜆(1 − 𝜆)[1 + 𝜆 − 𝑠 + (1 − 𝜆)(𝜆 − 𝑠)] >?

6The normalization of the breakthrough value to 1 implies 𝑠 = 1/4. Recall that 𝜆 = 1/2 and 𝑝0 = 3/4.
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−𝑠 + 𝑝0𝜆[1 + 𝜆 − 𝑠 + (1 − 𝜆)(𝜆 − 𝑠)]

⟺ −𝑠 + 𝑝0𝜆[1 + (𝜆 − 𝑠)(1 − 𝜆)2] >! 0,
which is verified for our parameters. Therefore, candidate (3.) cannot be an equilib-
rium, whether actions are observable or unobservable.

To check whether candidate (2.) is an equilibrium, assume that player 𝑖 is supposed
to play 𝑘𝑖,1 = 0. As 𝑝0 > 𝑠

𝜆 , we have to deter a deviation to 𝑘𝑖,1 = 1. Such a deviation
leads to a play of 𝑘𝑖,1 = 𝑘−𝑖,1 = 1, 𝑘𝑖,2 = 1, 𝑘−𝑖,2 = 0, and 𝑘𝑖,3 = 𝑘−𝑖,3 = 0 (if actions are
observable), or 𝑘𝑖,1 = 𝑘−𝑖,1 = 1, 𝑘𝑖,2 = 0, 𝑘−𝑖,2 = 1, and 𝑘𝑖,3 = 𝑘−𝑖,3 = 0 (this latter path
being possible whether actions are observable or unobservable). If continuation play
is given by the former option, the deviation is unprofitable if and only if

2𝑝0𝜆(𝜆 − 𝑠) − (1 − 𝑝0𝜆)𝑠 + 𝑝0(1 − 𝜆)𝜆[1 + 𝜆 − 𝑠 + (1 − 𝜆)(𝜆 − 𝑠)] ≥?

−𝑠 + 𝑝0𝜆[1 + 2(𝜆 − 𝑠) + 2(1 − 𝜆)(𝜆 − 𝑠)] − (1 − 𝑝0 +𝑝0(1 − 𝜆)2)𝑠 + 𝑝0𝜆(1 − 𝜆)2(1 + 𝜆 − 𝑠)

⟺ 𝑝0 ≤? 𝑠
𝜆,

which is not the case for our parameters; thus, the deviation is profitable. Now, if con-
tinuation play is given by the latter option, the deviation is unprofitable if and only
if

2𝑝0𝜆(𝜆 − 𝑠) − (1 − 𝑝0𝜆)𝑠 + 𝑝0(1 − 𝜆)𝜆[1 + 𝜆 − 𝑠 + (1 − 𝜆)(𝜆 − 𝑠)] ≥?

−𝑠 + 𝑝0𝜆[1 + 2(𝜆 − 𝑠) + 2(1 − 𝜆)(𝜆 − 𝑠)] + 𝑝0𝜆(1 − 𝜆)2(𝜆 − 𝑠)

⟺ 𝜆 ≥? 2,
which is, of course, violated, 𝜆 being a probability. We therefore conclude that candi-
date (2.) is not an equilibrium either, whether actions be observable or unobservable.

It remains to show that candidate (1.) is indeed an equilibrium. To do so, first let ac-
tions be observable. The latter (former) calculations from the previous paragraph show
that the player who does not play risky (who plays risky) in the second period does not
want to deviate. We can thus conclude that candidate (1.) is indeed an equilibrium for
observable actions. Next, assume that actions are unobservable. The same argument
as above shows that a deviation by the player who plays safe in the second period is
unprofitable. A deviation by the player who is supposed to play risky in the second
period leads to the path of play 𝑘𝑖,1 = 0, 𝑘−𝑖,1 = 1, 𝑘𝑖,2 = 1, 𝑘−𝑖,2 = 0, 𝑘𝑖,3 = 𝑘−𝑖,3 = 0;
such a deviation is therefore unprofitable if and only if

−𝑠+𝑝0𝜆[1+2(𝜆−𝑠)+2(1−𝜆)(𝜆−𝑠)]− [1−𝑝0 +𝑝0(1−𝜆)2]𝑠+𝑝0(1−𝜆)2𝜆(1+𝜆−𝑠) ≥?

2𝑝0𝜆(𝜆 − 𝑠) − (1 − 𝑝0𝜆)𝑠 + 𝑝0𝜆(1 − 𝜆)(1 + 𝜆 − 𝑠)

⟺ −𝑠 + 𝑝0𝜆[1 + (1 − 𝜆)2(𝜆 − 𝑠)] ≥! 0,
which holds for our parameters. We can thus conclude that candidate (1.) is an equi-
librium for unobservable actions as well.

We summarize our findings in the following
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Proposition 2. In perfect Bayesian equilibrium in our good-news game, both players use
the risky arm in the first period. Conditionally on no breakthrough having been observed,
exactly one player plays risky in the second period, while they both play safe in the last
period. There is no difference in the equilibrium prediction whether actions are observable
or unobservable.

7 Discussion and Final Thoughts

More on Economic Significance
Teams and Partnerships The economic landscape is increasingly shaped by team-
work, moving from individual efforts to collective action, as seen in research and busi-
ness practices. This shift emphasizes collaboration, but it also introduces challenges
like managing joint ventures and maintaining mutual trust amidst the complexities
of shared responsibilities. Success depends on discerning genuine efforts from free-
riding, with failure to do so potentially leading to skepticism, decreased participation,
and even dissolution of the team. Extensivemanagement literature, including works by
Luo (2002) and Madhok (2006), explores these dynamics, noting especially that larger
teams face greater risks of opportunistic behavior. In our setting, the team-produced
good is the information, which benefits all the players.
Public Goods This paper presents a theoretical framework and an experiment illus-
trating how teams navigate uncertainties surrounding outcomes, and explores the im-
pact of the observability of actions on the prevailing free-riding incentives. The frame-
work’s applicability extends to both intra-firm settings, such as research teams, and
inter-firm collaborations, such as R&D joint ventures and alliances, where the public
good produced is useful information. Collaborative research is widely acknowledged
for its benefits, and R&D joint ventures are encouraged under both US and EU com-
petition laws and funding programs. Nonetheless, firms considering investment in
such projects must contend with the challenges associated with contributing to a pub-
lic good.
Good-News Environment In our good-news environment, we study a game of strate-
gic experimentation in which information arrives through public breakthroughs. This
setting mimics real-world scenarios where new but risky technologies are introduced,
such as novel medical treatments, innovative manufacturing processes, or resource ex-
ploration. Understanding the trade-offs in public information production is crucial,
especially in the context of innovation and social learning. Innovators often take on
the initial risks and costs of experimenting with new ideas, thereby generating benefi-
cial informational externalities for the broader community. This dynamic underscores
the significant role that pioneers play in fostering progress and knowledge dissemina-
tion, highlighting the importance of their contributions to the collective understanding
and advancement in various fields. In all these cases, the benefits of shared informa-
tion from experimentation are evident. Examples include fishing locations being ob-
servable by others, consumers researching to find the best products, farmers choosing
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between traditional and genetically modified crops, and graduate students deciding
on their research fields. These examples highlight how shared information influences
decision-making across various contexts.
Recent Study and Gender Pay Gap Recently, Bardhi, Guo, and Strulovici (2023) in-
vestigate whether workers from social groups with similar productivity levels achieve
comparable lifetime earnings, focusing on the impact of early-career discrimination.
They find that in environments where failures are emphasized—that is, breakdowns—
such discrimination leads to significant lifetime earnings gaps among equally produc-
tive groups. Conversely, in environments focusing on successes—i.e., breakthroughs—
early discrimination tends to self-correct, ensuring comparable earnings. This out-
come remains consistent across varying labor market sizes, wage flexibility, learning
outcomes, productivity investments, and even with employers’ misjudged beliefs. Im-
portantly, their theoretical findings are consistent with the persisting gender pay gap
among surgeons documented by Lo Sasso, Richards, Chou, and Gerber (2011) and
Sarsons (2019).

Related Literature
This paper is related to several strands of literature, which we will discuss in turn.
Strategic Experimentation First, our theoretical framework can be viewed as amodel
of experimentation. Until fairly recently, the literature focussed on the trade-off of an
individual decision maker who acts in isolation. Bolton and Harris (1999) and Keller,
Rady, and Cripps (2005) have extended the individual decision problem to a multi-
player framework. Since then this literature is steadily growing. For example, Klein
and Rady (2011), Klein (2013), Keller and Rady (2015), and Hörner, Klein, and Rady
(2022) study various bandit problems in which different players may choose different
arms.7 While free-riding is a central element in these studies as well, players’ actions
are observable. Several studies analyzed experimentation in teams where the outcome
of each player’s action is unobservable while their actions are observable (Rosenberg,
Solan, and Vieille 2007, Murto and Välimäki 2011, Hopenhayn and Squintani 2011).
Closest to our paper are Bonatti and Hörner (2011) and Bonatti and Hörner (2017),
who study settings where actions are not observed, but outcomes are.
Free-Riding in Groups Second, our setting is related to an old literature on free-
riding in groups that emerged with Olson Jr (1971) and Alchian and Demsetz (1972),
andwas further explored byHolmstrom (1982), Legros andMatthews (1993) andWin-
ter (2004). Our framework relates to this literature on free-riding in that it studies the
timing of free-riding in teams that are working on a project whose outcome is uncer-
tain. For example, it can be viewed as a dynamic version of moral hazard in teams with
uncertain outcome.

7For a boundedly rational approach tomulti-armed bandits and imitation learning, see Schlag (1996,
1998, and 1999).
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Dynamic Contributions to Public Goods Third, our paper ties into the literature on
dynamic contributions to public goods, starting with Admati and Perry (1991), Fer-
shtman and Nitzan (1991), Marx and Matthews (2000), Lockwood and Thomas (2002)
and Compte and Jehiel (2004). Relevant to this study, especially for our good-news en-
vironment, is Fershtman and Nitzan (1991), who analyze equilibria in a setting with
complete information and find that observability worsens free-riding. In a laboratory
setting, Battaglini, Nunnari, and Palfrey (2016) test Battaglini, Nunnari, and Palfrey
(2014) by investigating a game of dynamic contributions to a durable public goodwhere
the stock of the public good builds up over time. In contrast to our setting, only con-
ventional payoff externalities—and not informational externalities—are studied.
Experimentation Experiments Lastly, our paper is embedded in an emerging liter-
ature that studies behavior in experiments of experimentation both individually and
in groups. We are aware of only four other experimental investigations of a strategic-
experimentation problem with bandits. Hoelzemann and Klein (2021) experimentally
implement a dynamic public-good problem where information about agents’ common
state of the world is dynamically evolving. Observed behavior is consistent with free-
riding because of strategic concerns, and participants adopt non-cut-off behavior and
frequent switches of action. Boyce, Bruner, and McKee (2016) study a setting with
ambiguity concerning the type of the risky arm to test strategic free-riding in a two-
player, two-period, game. Players are asymmetric in their costs in that one player was
known to have lower opportunity costs for playing risky than the other, so that it was
clear which player ought to play the free-rider in the first period. Hudja (2019) ex-
perimentally implements Strulovici (2010)’s collective experimentation model. An in-
dividual experimentation problem is compared to a collective experimentation prob-
lem where groups of three players face a majority-vote. Hoelzemann, Manso, Nagaraj,
and Tranchero (2024) study an environment where players must explore across differ-
ent options with varying but uncertain payoffs. While informative signals, interpreted
as data, can typically reduce uncertainty and improve welfare, in their setting it can
instead decrease individual and group payoffs. When data highlights sufficiently at-
tractive but dominated options, it can crowd-out exploration and thus lower payoffs as
compared to when no data is provided. Importantly, empirical evidence from the field
of genetic research provides a real-world confirmation of their framework and shows
that data on genetic targets of medium promise can significantly increase the delay of
valuable discoveries.

Other papers that carry out experimental tests of bandit problems consider single-
agent problems, where participants act in isolation. Banks, Olson, and Porter (1997)
experimentally implement a bandit setting with simple Bernoulli payout distributions,
and testwhether participants value information gained through experimentation. Meyer
and Shi (1995) and Gans, Knox, and Croson (2007) study choice patterns that are con-
sistent with a list of simple decision rules. Meyer and Shi (1995) test decision-making
under ambiguity and use experimental data to generate hypotheses about participants’
possible heuristics. Gans, Knox, and Croson (2007) consider several simple discrete-
choice models in a two-armed bandit set-up. Anderson (2001, 2012) uses arms with
payout distributions in his experiments and finds that participants experiment sub-
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optimally, and are willing to pay more for receiving perfect information than theory
would predict. Hudja and Woods (2022) studies individual behavior in multi-armed
bandit problems and implement four bandit problems that vary based on the horizon
and number of bandit arms. They find that most participants are best fit by either a
simple probabilistic ‘win-stay lose-shift’ strategy or standard reinforcement learning.
Hudja, Woods, and Gately (2023) investigates behavior in settings with forced experi-
mentation where participants are randomly blocked from implementing a specific op-
tion. In contrast to this study, there are no strategic links across players.

Free-Riding on Information
Understanding the trade-offs in generating public information is a first-order topic,
particularly as innovation and social learning often originate from pioneers. These
individuals take on the initial costs of exploring new methods, thereby generating ben-
efits for a wider audience through informational spillovers. This dynamic is evident in
various domains, including R&D, resource discovery, and drug trials, where the efforts
of a few can inform and benefit many. R&D, in particular, is universally acknowl-
edged as a pivotal driver of economic expansion, as highlighted by Romer (1990) and
Grossman and Helpman (1993). The productivity and innovative capacity of an econ-
omy are heavily reliant on the continuous accumulation of R&D knowledge and the
broader base of existing knowledge (Griliches 1988 and Coe and Helpman 1995). In
all these environments we have numerous instances where the communal sharing of
information from experiments is commonplace. In this paper, we provide the first ex-
perimental examination of the impact of observable and hidden actions on strategic
experimentation, outlining the conditions and the environments under which the ob-
servability of actions leads players to free-ride rather than engage in socially beneficial
exploration.
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