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1 Introduction
The leadingmodels of bounded rationality in games, as level-𝑘 and cognitive hierarchy, are iterative
‘top-down’ models of reasoning: a player with a finite level of reasoning believes others can reason
to a strictly lower level and best responds to that belief. This restriction is critical in how the model
is operationalized – it ensures that a player requires only a finite number of steps of reasoning to
optimally respond to their belief. Importantly, a player who can do 𝑘 steps of iterated reasoning (i.e.,
𝑘 steps of “I think, you think, I think, ...”) can only model others as being capable of doing at most
𝑘 − 1 steps of iterated reasoning.1 This ability to model the behavior of others, and hence predict
their actions, is a key assumption in these models. This, however, leads to a natural and interesting
question: what happens if a player believes others may reason to a higher level than they do? For
example, how will a player respond if they believe that their opponent is more sophisticated than
them?

We propose a behavior that reveals to an analyst that Ann, who is playing a game with Bob,
is reasoning about Bob’s behavior outside of the iterative ‘top-down’ model of reasoning. We then
implement a novel experimental design that allows us to identify this behavior experimentally and
evaluate its pervasiveness in the population. We also investigate whether Ann’s behavior depends
on Bob’s observed characteristics that may be correlated with his sophistication.2

Recall that in iterative ‘top-down’ reasoningmodels players’ beliefs are anchored in the behavior
of a specific non-rational L0 type, and types are heterogeneous in their level of reasoning. The L1
type performs one level of reasoning and best responds to the L0 type. In turn, the L2 type performs
two levels of reasoning and best responds to some belief over L0 and L1 types, and so on with the
L𝑘 type best responding to some belief over L0, ..., L(𝑘−1) types. But how would Ann behave if she
believed that Bob may be more sophisticated than her? Within the prism of the iterative ‘top-down’
model of reasoning, it implies that although she would believe that Bob is rational (since she is
rational), she will not be able to model his behavior. Still, Ann’s behavior would be consistent with
2-rationalizability, which allows all actions that are consistent with rationality and belief in others’
rationality.

We design two diagnostic games that allow the analyst to identify this behavior. The first is
a dominance-solvable game (“𝐷𝑆”) in which Bob has a dominant strategy. This game permits the
analyst to identify if Ann “believes that Bob is rational.” Using the second game – which we refer to
as the iterative-reasoning game (“𝐼𝑅”) – the iterative ‘top-down’ model of reasoning together with
belief in rationality makes the sharp prediction that Ann would value 𝐼𝑅 strictly more than 𝐷𝑆.
However, if Ann only believes that Bob is rational, but her reasoning process is not captured by
the model (but it consistent with 2-rationalizability), she may value𝐷𝑆more than 𝐼𝑅. Importantly,
these inferences do not depend on Ann’s risk or social preferences. This results in a conservative
estimate of the proportion of participants who are inconsistent with the iterative ‘top-down’ model
of reasoning.

Our identification strategy uses a more general anchor than the standard L0 type. We consider
1Any player who can reason about their opponent doing 𝑚 steps must necessarily be able to do at least 𝑚 + 1 steps of
reasoning themselves.

2Gill andProwse (2016) investigated how cognitive ability and character skills influence the evolution of play in repeated
strategic interactions and estimate a structural model of learning based on level-𝑘 reasoning.
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a rational, but non-strategic, L1 type to anchor the iterative ‘top-down’ model of reasoning. This
player concentrates only on their own payoff, without making any strategic considerations. This
increases the set of possible actions that are consistent with the L1 type, includes the “standard” L1
type (that best-responds to uniform play of the L0 type), and accommodates other focal behaviors.

Our test to identify if Ann’s behavior is consistent with the prediction of a generalized iterative
reasoning model may be extended to the case where Ann may not believe that Bob is rational, if
the form of irrationality considered is a random choice of action by Bob (a uniform play by the L0
type, as is typical in many models). In this case, the ranking of𝐷𝑆 and 𝐼𝑅 games is unaltered.

The novel experimental design we employ has four components. The first are the two diagnos-
tic games: 𝐼𝑅 and 𝐷𝑆. The second are two control games that rule out other confounding factors
that can contribute to preferring𝐷𝑆 over 𝐼𝑅. Third, we investigate whether participants’ reasoning
process (iterative ‘top-down’ models of reasoning or 2-rationalizability) depends on their oppo-
nents’ observed characteristics. To achieve this, we exogenously vary the participants’ opponent
type: they face either a Ph.D. student in Economics or an undergraduate student of any discipline.
The fourth component is a preference-elicitation mechanism over the games. Rather than directly
eliciting a choice between the two diagnostic games, participants first choose their actions in each
game (and against each potential opponent), and then we elicit their respective valuations.3,4 This
allows the analyst to infer both participants’ preferences between the two diagnostic games and par-
ticipants’ (confidence in their) beliefs about their opponents’ behavior. Moreover, we can exploit
the valuation data to isolate those participants who believe that their opponent is rational, as the
predictions in our games are the starkest for this subset of participants.

We find that approximately half of the choices made by participants are inconsistent with the
iterative ‘top-down’ model of reasoning, especially for those who believe that their opponents are
rational -where themodel’s prediction are inconsistentwith 64%of choices. Moreover, roughly 72%
of participants exhibit a stable model of reasoning irrespective of the opponent’s characteristics.
Among the remainder, the results are split: roughly 12% make choices consistent with iterative
‘top-down’ reasoning against an undergraduate but not against a Ph.D. student, while roughly 16%
exhibit the opposite pattern.

Pioneering scholarly contributions in the iterative ‘top-down’ reasoning literature include Stahl
and Wilson (1994; 1995), Nagel (1995), Costa-Gomes, Crawford, and Broseta (2001), Camerer,
Ho, and Chong (2004), and Costa-Gomes and Crawford (2006). For a survey of this literature, see
Crawford, Costa-Gomes, and Iriberri (2013). By construction, these papers do not consider the
questions we investigate here.

Arad and Rubinstein (2012a) and Kneeland (2015) developed novel experimental designs to
identify levels of reasoning in an iterative model. Moreover, in the former design, the authors ex-
plicitly asked participants about their thought process when making their choices to gain a better
understanding of participants’ behavior. Arad (2012) proposed a new allocation game to study
iterative reasoning and the performance of the level-𝑘model, and showed that level-𝑘 thinking ac-
3Heinemann, Nagel, and Ockenfels (2009), Coricelli and Nagel (2009), and Nagel, Brovelli, Heinemann, and Coricelli
(2018) use a related strategy to elicit certainty equivalents in coordination games, however, in their context, the elicited
valuations affect both the payoffs in the games and their value.

4To allow participants to recall their reasoning in the valuation stage, we encouraged them to write it down in a text
box. We use this information to gather further qualitative evidence on their choice process.
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counts for a smaller number of choices made by participants than in other experiments. Further,
Arad and Rubinstein (2012b) studied how participants reason iteratively on few dimensions, or fea-
tures, in an allocation game (Colonel Blotto). Subsequently, Arad and Penczynski (2020) studied
a few other environments of resource allocation with communication between participants, and
confirmed that many participants engage, in fact, in multi-dimensional iterative reasoning.

Also related to ourwork isAgranov, Potamites, Schotter, andTergiman (2012)whomanipulated
participants’ beliefs about the cognitive levels of the players they are playing against; and Alaoui
and Penta (2016) who studied a model of iterative reasoning where player’s depth of reasoning is
endogenously determined. More recently, Alaoui, Janezic, and Penta (2020) further developed an
experimental design strategy to distinguish level-𝑘 behavior driven by participants’ beliefs from
their cognitive bounds, and found an interaction between participants’ own cognitive bound and
reasoning about the opponent’s reasoning process.

The paper proceeds as follows. Section 2 introduces the design and the set of diagnostic games
as well as the two control games. It builds the theoretical background necessary for our experiment
– discussed in Section 3 – and the identification strategy used in the analysis conducted in Section
4. Section 5 offers a more formal analysis. Finally, Section 6 concludes with a brief discussion of
the results. The Appendix contains further analyses, details on participants’ individual behavior,
the experimental instructions, and screenshots of the experimental interface.

2 The Design
We employ both an iterative ‘top-down’ model of reasoning, based on level-𝑘 and cognitive hierar-
chy, and the concept of 2-rationalizability to guide our experimental design, identification strategy,
and analysis. We provide a brief description of the model and the concept here and engage in a dis-
cussion on how these interact with our setup in the next subsection. A more formal and general
analysis will be provided in Section 5.

2.1 Building Intuition: Model and Solution Concept
Iterative ‘top-down’ model of reasoning In this model, players anchor their beliefs in a naïve model
of others’ behavior and adjust their beliefs by a finite number of iterated best-responses. To date,
these models have been anchored in an “irrational” (L0) player-type who either plays each strategy
with equal chance or chooses some salient action, depending on the application. Players of level-𝑘
(𝑘 > 0) are rational in the sense of best-responding to their beliefs, but players of different 𝑘 differ
in their beliefs on the action(s) played by their opponents.

We consider a more general model of reasoning, with a different cognitive interpretation of L1.
Our model is anchored in the behavior of a non-strategic L1 type who makes decisions based solely
on their own-payoff information. To build intuition for this type, consider a decision maker who
chooses an action to allow for the possibility to achieve the highest possible payoff in a given game,
or, alternatively, chooses an action to maximize their average payoff. In both cases, the decision
maker is non-strategic as they never form beliefs about their opponents’ behavior. Nevertheless,
their behavior may very well reflect their own payoff information and primary focus therein. If one
views their choice of action independently of the strategic environment, L1-choices could be viewed

4



as “rational.” Since there are many possible criteria a decision maker could employ to determine
their action choice, selecting an action in order to ensure the maximum or the average payoff being
just two examples, we will use a partial-order approach to formalize this behavior. Effectively, as
long as an action is optimal under some own-payoff criteria, we would allow our non-strategic type
(L1) to play it.5

Since we want to capture all reasonable own-payoff criteria that our decision maker could use,
the only assumptions we impose are that the criteria must be non-strategic in nature, and respect
the notion that higher payoffs are preferred, i.e., strict monotonicity. As motivation, consider two
payoff vectors 𝑥𝑥𝑥 = (𝑥1,… , 𝑥𝑛) and 𝑦𝑦𝑦 = (𝑦1,… , 𝑦𝑛) such that 𝑥𝑥𝑥 is greater than 𝑦𝑦𝑦; that is, 𝑥𝑖 ≥ 𝑦𝑖 for
all 𝑖 ∈ {1,… , 𝑛} with strict inequality for at least one 𝑖. In this case, it seems clear that 𝑥𝑥𝑥 should be
preferred to 𝑦𝑦𝑦 if our decision maker prefers higher payoffs. Further, since we are trying to capture
the behavior of a non-strategic type, we should ignore any information contained in the ordering
of the payoff vectors, as any concerns for ordering would reflect strategic considerations. Thus, we
propose the following partial order ≻1: 𝑥𝑥𝑥 is preferred to 𝑦𝑦𝑦 if there exists a permutation of 𝑥𝑥𝑥 that
is greater than 𝑦𝑦𝑦. We then allow our non-strategic type to play any action that is undominated
according to ≻1.

Notice that the binary relation ≻1 is not, in general, complete. For example, consider two payoff
vectors 𝑎𝑎𝑎 = (20, 0, 10) and 𝑏𝑏𝑏 = (12, 8, 16). Here, neither 𝑎𝑎𝑎 is preferred to 𝑏𝑏𝑏 nor 𝑏𝑏𝑏 is preferred to
𝑎𝑎𝑎. This reflects the fact that strategy 𝑎 might be optimal under one criteria (e.g., it has the highest
payoff), yet strategy 𝑏 might be optimal under another criteria (e.g., it has the highest arithmetic
mean).6 Alternatively, consider the two payoff vectors 𝑐𝑐𝑐 = (20, 9, 14) and 𝑑𝑑𝑑 = (12, 8, 16) that are
comparable according to ≻1; that is, 𝑐𝑐𝑐 is preferred to 𝑑𝑑𝑑.

In general, the partial order ≻1 incorporates many potential own-payoff heuristics that seem
both intuitive and reasonable. The set of actions a L1 type will choose from – the actions that are
undominated through≻1 –must always contain the action that leads to the highest payoff, an action
with the highest minimum payoff, as well as the action with the highest arithmetic mean.7 Further,
notice that the action with the highest arithmetic mean is equivalent to the action that maximizes
a player’s expected payoffs under the belief that others’ play each action with equal probability. As
such, our approach nests the standard level-𝑘 and cognitive hierarchy models as a special case as
they typically assume that the L0 type plays uniformly random.8

The behavior of all higher types is then anchored in the behavior of the L1 type. A level-2 (L2)
type assumes that all other players are the L1 type and chooses accordingly a strategy thatmaximizes
their expected utility under some probability distribution over L1 strategies.9 A level-3 (L3) type
5Coricelli and Nagel (2009) as well as Nagel, Brovelli, Heinemann, and Coricelli (2018) found that players who do not
engage in high-level strategic thinking have similar brain activation to decision makers who make risky decisions in
not-strategic environments, providing phyisical support to our typology of L1 as rational but non-strategic.

6Note that probabilistic beliefs on the actions chosen by others, as is assumed in the literature to date, induces a complete
ranking on the player’s actions.

7All three of these own-payoff heuristics were shown to have explanatory value as part of a focal L0 type in Wright and
Leyton-Brown (2014).

8Moreover, our approach also nests many special cases of non-strategic behavior proposed in the level-𝑘 literature to
express notions of ‘focal points’ such as playing 20 in Arad and Rubinstein (2012a)’s 11-20 game. Hence, in the current
setup, the L1 type will play that strategy but beyond relabelling of levels – nothing will change.

9Most iterative reasoning applications assume that players are risk-neutral and hence maximize expected payoffs. Im-
portantly, we allow instead for any expected-utility preferences.
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assumes that all other players are either L1 or L2 types and chooses a strategy that maximizes their
expected utility under some probability distribution over both L1 and L2 strategies. This process
continues for higher-level types ad infinitum and, more generally, with L𝑘 types choosing a strategy
that maximizes expected utility given some belief over the play of strictly lower types.

2-rationalizability This solution concept can be intuitively understood via its relationship with the
notion of rationality and reasoning about rationality. A player is rational if they play a best-response
– maximize expected utility – given their subjective belief about how the game is played. A player
believes in rationality if they believe others are rational. That is, if they believe others are playing a
best-response given their subjective beliefs about how the game is played. The solution concept of
2-rationalizable strategies incorporates both the assumption of rationality and belief in rationality.10

The 2-rationalizable set is found by first finding the set of 1-rationalizable actions for each player.
These are the actions played by a rational player: any action that maximizes a player’s expected
utility given some utility function and some belief about the play of others. The 2-rationalizable
set comprises of all actions played by a rational player who believes others play actions in the 1-
rationalizable set: any action that maximizes a player’s expected utility given some utility function
and some belief over the 1-rationalizable play of others. This solution concept is formally defined
in Section 5.

Iterative ‘top-down’ model of reasoning and 2-rationalizability Below we highlight the relationship
between the model and the solution concept introduced above. To start, notice that the iterative
‘top-down’ model of reasoning implicitly imposes assumptions about how types reason about ra-
tionality. We highlight three facts. First, all types with 𝑘 ≥ 2 are rational as they best respond to
their beliefs about others’ play. Second, even though the L1 type cannot be considered rational in
the game-theoretic sense as they are non-strategic and do not form beliefs about others’ strategies,
they nevertheless do play actions that are consistent with rationality. That is, any action that is
undominated by ≻1 is also a best response to some belief about others’ play under some expected
utility preferences. Third, the behavior of any L𝑘 type with 𝑘 ≥ 2 is consistent with the assumption
of belief in rationality. This result follows naturally since any such type believes that the behavior
of others is, in fact, consistent with rationality.11

Further notice that the iterative ‘top-down’ model of reasoning imposes an additional assump-
tion beyond reasoning about rationality. It imposes the assumption that beliefs are anchored in
non-strategic play. Put differently, the L2 type cannot hold arbitrary beliefs about the play of the
game. Rather, they must hold beliefs consistent with L1 play. While we use a generous definition of
L1 play here to allow for a broad notion of non-strategic behavior, in many games this set of actions
still may be small, even a singleton set. As such, one can interpret the L2 type here as a type that
can model the play of others. Naturally, the same holds true similarly for higher levels. The L3 type
that believes others are either L1 or L2 types cannot hold arbitrary beliefs about others’ rational
10The relationship between reasoning about rationality and 𝑘-rationalizable strategies follows from standard results,
e.g., Bernheim (1984), Brandenburger and Dekel (1987), and Tan and da Costa Werlang (1988) among others.

11Notice that themodel can easily be generalized if one wishes to allow for uncertainty over others’ rationality by simply
introducing an additional non-strategic type that randomizes uniformly over the set of actions. We shall discuss this
in more detail in Section 5.
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play, but rather must hold beliefs that are consistent with L1 or L2 play, and so on. Therefore, one
can interpret the iterative ‘top-down’ model of reasoning as assuming that players in fact canmodel
the play of others.

This is in sharp contrast to the concept of 2-rationalizability. This approach is grounded in
the assumption that players can hold any beliefs about the play of others, and only requires those
beliefs to be consistent with the assumption that others are rational. The assumption of rationality
is less stringent than that imposed by L1 play. In this sense, 2-rationalizability can be interpreted
as relaxing the assumption that players possess the ability to model the play of others, in contrast
to iterative ‘top-down’ models of reasoning.

Key design assumptions In what follows, we will assume that players are strategic. For the iterative
‘top-down’ model of reasoning, this means that we will focus on the behavior of L𝑘 types for 𝑘 ≥ 2
and not the non-strategic L1 players. This restriction is motivated by our main research question –
whether players canmodel the play of others. This question is not applicable to non-strategic players
who, by definition, do not reason about the play of others. Moreover, players that are rational and
believe in rationality will play a key role in our design. As we assume that players themselves are
rational since our focus is on types with 𝑘 ≥ 2, and investigate if they believe that others may be
more sophisticated than them, it is essential to at least require them to believe that others are rational
– even if they cannot model their behavior.12 As such, our design will make stark predictions for
those participants who are rational and believe in rationality of others.

2.2 The Games
In order to identify behavior that reflects the player’s belief that other players may be rational, but
their behavior cannot be modeled, we judiciously designed two diagnostic games. One where the
ability to model the opponents’ behavior is important for how the participant values the game, and
the another where such an ability is less important.

The strategic form of these games is depicted in Figure 1.
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Figure 1: The Iterative-Reasoning Game (𝐼𝑅) and the Dominance-Solvable Game (𝐷𝑆)

12Otherwise, a player may not be able to predict others’ action choices since they believe others are playing randomly.
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The iterative-reasoning game “IR” The iterative ‘top-down’model of reasoning predicts that players
choose actions in {𝑎, 𝑏} and in {𝐵, 𝐶}. To gain intuition, consider first the simple case where for all
𝑘 ≥ 2, L𝑘 type believes others are L(𝑘 − 1). Recall that Player 1 of type L1 considers their own
payoffs but is non-strategic. This player chooses between the payoff vectors 𝑎𝑎𝑎 = (0, 12, 13, 11),
𝑏𝑏𝑏 = (4, 14, 0, 6), 𝑐𝑐𝑐 = (10, 0, 11, 12), and 𝑑𝑑𝑑 = (13, 8, 6, 0). Thus, the L1 type plays actions 𝑎 or 𝑏, as
actions 𝑐 and 𝑑 induce payoffs that are dominated by a permutation of 𝑎’s payoffs. Either action 𝑎
or 𝑏 could be a natural focal action: action 𝑎 is associated with the highest arithmetic mean while
action 𝑏 is associated with the highest payoff. Similarly, Player 2 of level-1 plays action 𝐶. This
action dominates all other actions according to ≻1: it contains the highest arithmetic mean and
highest payoff, and is therefore a natural focal action.

Any new iteration (“the next level”) is a best response to the opponent’s behavior. For example,
the L2 type of Player 1 plays 𝑎 and the L2 type of Player 2 plays 𝐵 or 𝐶. Then, the L3 type of Player
1 plays 𝑎 or 𝑏 and the L3 type of Player 2 plays 𝐵. This process continues ad infinitum. Player 1’s
best responses are always in {𝑎, 𝑏} and Player 2’s best responses are always in {𝐵, 𝐶}.

The iterative ‘top-down’ model of reasoning is a more general model than this simple model. It
explicitly allows players to hold arbitrary risk preferences within expected utility. Moreover, players
mayhold any belief about the expected-utility preferences of other players aswell as over lower types
L1, ..., L(𝑘 − 1) of other players. Even with these generalizations it is still true that players will play
actions in {𝑎, 𝑏} and in {𝐵, 𝐶}. For details, see Section 5. As all strategic types (𝐿𝑘 where 𝑘 ≥ 2,
i.e., those types that are rational and believe in rationality) of Player 1 in the generalized iterative
‘top-down’ model of reasoning play an action in {𝑎, 𝑏} and expect Player 2 to choose an action in
{𝐵, 𝐶}, their expected payoff must be strictly greater than 12.13

The solution concept of 2-rationalizability does not restrict Player 1 to value 𝐼𝑅 above 12. First,
note that all actions of Player 2 in 𝐼𝑅 are 1-rationalizable, since for any of their actions there exists
some belief about Player 1’s play such that the action is a best response.14 Second, if Player 1 believes
that Player 2 is rational, theymust believe that Player 2 plays a 1-rationalizable action. Such a player
may reasonably hold any belief over the distribution of {𝐴, 𝐵, 𝐶,𝐷}. For example, Player 1 who
believes that Player 2 is rational and assigns equal probability to all actions of Player 2 will choose
the action 𝑎, and their expected payoff will be less than 12.

The dominance-solvable game “DS” The second diagnostic game is dominance-solvable in a single
iteration, as𝐴 is a strictly dominant strategy for Player 2. It obviously dominates 𝐵 and𝐶 according
to ≻1, as strict domination does not require strategic reasoning. That is, the L1 type and any higher
type of Player 2 will play action 𝐴, which is a natural focal point for Player 2.

Now consider Player 1’s behavior. If they are of level-1, they choose between payoff vectors
𝑎𝑎𝑎 = (0, 12, 11), 𝑏𝑏𝑏 = (5, 13, 0), and 𝑐𝑐𝑐 = (12, 8, 0). Notice that a permutation of 𝑎𝑎𝑎 dominates 𝑐𝑐𝑐, thus
𝑎𝑎𝑎 ≻1 𝑐𝑐𝑐. However, neither𝑎𝑎𝑎 ≻1 𝑏𝑏𝑏 nor 𝑏𝑏𝑏 ≻1 𝑎𝑎𝑎 is true. Either action 𝑎 or 𝑏 could be natural focal points
for a Player 1 of type L1. Action 𝑎 is associated with the highest arithmetic mean, while action 𝑏
13Player 1 may value 𝐼𝑅 exactly at 12. This, however, can only occur with an extreme form of ambiguity aversion
coupled with the player’s set of priors including all degenerate priors. We elaborate on this point in Section 5 and
document that it is not an empirical concern.

14Beyond𝐵 and𝐶 discussed above,𝐴 is a best-response to Player 1 playing 𝑐 and𝐷 is a best response to Player 1 playing
𝑑.
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is associated with the highest payoff. Since Player 2 of type L𝑘 (𝑘 ≥ 1) plays 𝐴, it must be that any
Player 1 of type L𝑘 (𝑘 ≥ 2), best responds by playing 𝑐. From the argument above, it follows that
the expected payoff of a rational Player 1 who believes that Player 2 is rational (all types with 𝑘 ≥ 2)
equals 12.

In contrast to the 𝐼𝑅 game, the solution concept of 2-rationalizability does restrict the valuation
of the𝐷𝑆 game. Any player who is rational and believes in rationality must still behave exactly the
same as in the iterative ‘top-down’ model of reasoning. Thus, any such player chooses action 𝑐 and
has an expected payoff of exactly 12 irrespective of being an iterative-reasoner or not.

Player 1’s preferences over IR and DS All players who are rational and believe that their opponents
are rational prefer playing 𝐼𝑅 over𝐷𝑆 in the iterative ‘top-down’ model of reasoning. The expected
payoff of 12 in 𝐷𝑆 is strictly lower than the expected payoff in 𝐼𝑅. As a consequence, a ‘top-down’
iterative-reasoner should strictly prefer to play 𝐼𝑅 over 𝐷𝑆. However, a player who is rational and
believes in rationality, yet falls outside the iterative ‘top-down’ model of reasoning, may very well
prefer to play𝐷𝑆 over 𝐼𝑅. This behavioral difference is the core of our identification strategy.

Up to this point, we have constrained beliefs of rationality somewhat tightly for our strategic
types (types with 𝑘 ≥ 2). In our iterative ‘top-down’ model of reasoning, there is no way for such
a type to be uncertain about rationality; that is, there is no sense in which a type could believe
others are playing actions that are not consistent with rationality. However, we can easily account
for that by introducing a second non-strategic type that plays randomly, which we refer to as “level-
0” (“L0 type”). We now simply permit a strategic L𝑘 type to hold any beliefs over lower types
{𝐿0, 𝐿1,… , 𝐿(𝑘 − 1)}. Importantly, relaxing beliefs about rationality in such way does not alter the
ranking of 𝐼𝑅 over𝐷𝑆. Put differently, any such strategic ‘top-down’ iterative-reasoner should still
strictly prefer to play 𝐼𝑅 over𝐷𝑆.15

Lastly, the comparative statics also hold in Nash equilibrium.16 𝐼𝑅 has a Nash equilibrium in
mixed strategies where the equilibrium actions coincide with the actions prescribed by the iter-
ative ‘top-down’ model of reasoning. The equilibrium payoff is also strictly greater than 12 and
strictly dominates the equilibrium payoff in𝐷𝑆, which is exactly 12. The Nash equilibrium of 𝐼𝑅 is
((8/9, 1/9, 0, 0), (0, 13/15, 2/15, 0)) with payoffs (182/15, 112/9). 𝐷𝑆 has a Nash equilibrium in pure strate-
gies: ((0, 0, 1), (1, 0, 0)) with payoffs (12, 10).

The control games The two control games are designed to rule out other confounding factors that
can potentially contribute to preferring 𝐷𝑆 over 𝐼𝑅. Their strategic form is depicted in Figure 2.
Notice that Player 1’s potential payoffs in the two control games are identical to their payoffs in𝐷𝑆,
so the only difference between the three games arises from varying Player 2’s payoffs.

Our controls serve two purposes. First, we want to control for the size of the game; that is,
whether players prefer any smaller game over 𝐼𝑅 per se. To do so, we introduce 𝑀𝑆, which is a
3 × 3 bimatrix game with the iterative ‘top-down’ model of reasoning prescribing a player’s actions
∈ {𝑎, 𝑏, 𝑐}. 𝑀𝑆 has a Nash equilibrium in mixed strategies similar to 𝐼𝑅 where players mix over
actions ∈ {𝑎, 𝑏} (but not 𝑐), and Player 1’s equilibrium payoff is strictly lower than the equilibrium
15We elaborate on this in Section 5, where we present a more formal analysis.
16This is also true in logit Quantal Response Equilibrium.
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Figure 2: The controls – The Mixed-Strategy Game (𝑀𝑆) and the Nash-Equilibrium Game (𝑁𝐸)

payoff in 𝐼𝑅.17

Second, wewant to control for the fact that𝐷𝑆 has a uniqueNash equilibrium in pure strategies.
Thus, we consider𝑁𝐸 – a game with a unique Nash equilibrium in pure strategies. In contrast to
𝐷𝑆, however, this game is not dominance-solvable. Here too, the iterative ‘top-down’ model of
reasoning prescribes player’s action ∈ {𝑎, 𝑏, 𝑐}. Once again, Player 1’s equilibrium payoff in 𝑁𝐸 is
strictly lower than the equilibrium payoff in 𝐼𝑅. The Nash equilibrium in𝑁𝐸 is ((0, 0, 1), (1, 0, 0))
with equilibrium payoffs (12, 10), which coincide with the equilibrium payoffs in𝐷𝑆.

As we are solely interested in participants’ behavior in the role of Player 1, all three 3 × 3 games
(𝐷𝑆,𝑀𝑆, and𝑁𝐸, respectively) are chosen to share common features. As noted above, all payoffs
for Player 1 are kept constant across these games to improve control and ease of comparison. We
only altered the payoffs associated with actions ∈ {𝐴, 𝐵, 𝐶} for Player 2. Moreover, notice that in the
control games, like the 𝐼𝑅 game, all actions are iteratively undominated. Thus, 𝐷𝑆 stands alone as
being the unique game where reasoning about rationality alone is enough to predict the opponent’s
play.

3 The Experiment

3.1 Implementation
We divided the experiment into two parts. In each part, participants faced four decision-making
problems in random order. We told participants that they would be randomly matched with an-
other participant, who already made their choices in a previous auxiliary session. The purpose of
this design feature was to collect all data online in an individual decision-making setting and to
ameliorate any form of social preferences when choosing actions.

We told participants that this other participant, whom we called “Player 𝑍,” is either an un-
dergraduate student from any year or discipline at the University of Toronto or a Ph.D. student in
Economics who took several advanced courses that are highly relevant for this experiment. Par-
ticipants would not learn their opponent type until the conclusion of the experiment. Therefore,
participants made always two choices: one if Player𝑍was an undergraduate student from any year
or discipline and another if they were a Ph.D. student in Economics.

Figure 3 visualizes the implementation of the two diagnostic games.
17The Nash equilibrium in𝑀𝑆 is ((7/9, 2/9, 0), (0, 11/12, 1/12)) with payoffs (143/12, 76/9).
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Figure 3: Game Implementation – 𝐼𝑅 (top) and𝐷𝑆 (bottom)

The matrices on the left represent participants’ payoffs in 𝐼𝑅 (top) and 𝐷𝑆 (bottom). The ma-
trices on the right represent Player 𝑍’s payoffs in 𝐼𝑅 and 𝐷𝑆, respectively. The opponent type was
visualized via color (red = undergraduate and blue = Ph.D. student).

Our experimental implementation of the games makes it particularly salient for participants
that Player𝑍 has a strictly dominant strategy in𝐷𝑆. Moreover, in 𝐼𝑅, it highlights the attractiveness
of action 𝐶 for the L1 type of Player 𝑍, even though it is more nuanced compared to 𝐷𝑆. As this
type is non-strategic and does not take the other player’s incentives into account, visualizing each
player’s payoffs in a separate matrix directs attention to the sequence of numbers or single entry
that is the highest. Put differently, both our design and implementation make natural focal points
for a non-strategic player in both games particularly salient.

To improve participants’ experience and to assist in selecting an action, we implemented a high-
lighting tool that used two colors: yellow and light green. When a participant moved their mouse
over a row in their matrix (“Your Earnings”), the action was highlighted in yellow color in both
matrices: a row in their matrix, and a column in Player 𝑍’s matrix (“Player 𝑍’s Earnings”). By
left clicking the mouse over a row it remained highlighted, and participants could unhighlight it
by clicking their mouse again or clicking another row. Similarly, when participants moved their
mouse over a row that corresponds to an action of Player 𝑍 in “Player 𝑍’s Earnings,” the row was
highlighted in light green and the corresponding column was highlighted in light green in “Your
Earnings.” Clicking the mouse over the row kept it highlighted, and clicking it again (or clicking
another row) unhighlighted it.
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We further told participants that Player 𝑍 participated in a previous auxiliary experimental
session in which they were matched with another participant, called “Player 𝑌,” who participated
in the same session and played their role. When Player 𝑍 was an undergraduate student from
any year or discipline, so was Player 𝑌; and when Player 𝑍 was a Ph.D. student in Economics, so
was Player 𝑌. We used Player 𝑍’s decisions from the auxiliary sessions to determine participants’
earnings in the main experiment.

In addition, we gave participants the opportunity to write notes to their “future self.” Below each
decision problem, participants could write down the reasoning behind their choice of action in a
text box. What they typed was displayed later on in the experiment. We told participants that these
notes would help them when making choices in the second part of the experiment.

To account for possible order effects, we gave participants another opportunity to revisit their
choices and confirm them.18 We displayed their notes and participants were able to modify these.
Afterwards, participants advanced to the next part of the experiment.

Figure 4: The Valuation Task
18We find no evidence of order effects, using both parametric and non-parametric tests.
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In the second part of the experiment, we elicited participants’ approximate valuations via choice
lists. We asked them tomake a series of choices between playing the four decision problems against
both Player𝑍 typeswith their action choices from the first part of the experiment and sure amounts.
For example, suppose that in the first part of the experiment a participant chose action 𝑐 in any given
3×3 game, as highlighted in Figure 4. The payoff from the decision problem depends on the action
chosen by Player 𝑍 and is either $12, $8, or $0 if Player 𝑍 chose 𝐴, 𝐵, or 𝐶, respectively.

The choice problems were organized in four pairs (4 × 2 = 8 lists), where Option 𝐴 changed
across lists and represented participants’ payoffs from each of the four decision problems against
both opponent types from the first part of the experiment. Option 𝐵 paid with certainty and started
at $8 in the decision of the choice list, and increased by $0.25 as the participant moved from one
line to the next until $14. For each decision problem, we showed participants their notes from the
first part of the experiment to remind them of their reasoning behind their action choices.

Finally, one of the choice problems in one of the choice lists was randomly selected, and the
participants’ choice in that choice problem determined their payment. If a participant chose the
sure amount inOption𝐵, then they received the payment specified inOption𝐵 in that choice prob-
lem. If a participant opted for Option 𝐴, then their payment depended on the action chosen in the
decision problem in the first part of the experiment, if their Player𝑍was an undergraduate student
from any year or discipline or a Ph.D. student in Economics, and on the action chosen by Player𝑍.
Figure 5 highlights the timeline of the experiment and summarizes the key features.

3.2 Participants and Procedure
We conducted the experiment online due to the COVID-19 pandemic in April 2020 with students
enrolled at the University of Toronto. Participants were recruited from Toronto Experimental Eco-
nomics Laboratory’s (TEEL) subject pool using ORSEE (Greiner 2015). No one participated in
more than one session. Participants signed up ahead of time for a particular day, either the 4𝑡ℎ or
5𝑡ℎ of April 2020 for the auxiliary part of the experiment; or the 11𝑡ℎ, 13𝑡ℎ, and 15𝑡ℎ to 20𝑡ℎ of April
2020 for themain experiment. On the day of the experiment, we sent participants an electronic link
at 8 AM EDT, and they had to complete the tasks by 8 PM EDT. During this time window, partic-
ipants could contact an experimenter anytime via cell phone or Skype for assistance. After reading
the instructions, participants had to correctly answer nine incentivized comprehension questions
before starting the first task, and further five incentivized comprehension questions before starting
the second task. We paid $0.25 for answering each question correctly on their first trial. If par-
ticipants made a mistake, no payment was made for that question, but they had to answer it cor-
rectly in order to proceed to the next question. The experiment was programmed in oTree (Chen,
Schonger, and Wickens 2016). We recruited a total of 244 (9 for the auxiliary sessions and 235 for
the main experiment) participants and all payments were made via Interac e-transfer, a commonly
used payment method by Canadian banks that only requires an e-mail address and a bank account.
The average participant earned approximately $18 (maximum payment was $22.50 and minimum
payment was $5.50), including a show-up payment of $5. All payments were in Canadian dollars.
The instructions and experimental interface are reproduced in the Online Appendix.19

19A live version with all dynamic elements displayed to participants can be accessed upon request.
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Figure 5: Timeline of the Experiment

3.3 Discussion of the Implementation and Procedure
The core idea of this paper is to identify a novel behavior that reflects whether reasoning is outside
the iterative ‘top-down’ model of reasoning. Thus far, we developed an identification strategy for
such behavior and before presenting the results of the evaluation of its pervasiveness, we briefly dis-
cuss some aspects of the experimental implementation and its procedure. We collected Player 𝑍’s
decisions on action choices in the four games in two separate auxiliary sessions. This has the follow-
ing advantages: First, wewere able tomatch participants (Player𝑌 and Player𝑍) with the same level
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of sophistication. Second, we could collect all decisions in the main experiment in an “individual
decision-making” framework. As we collected the data during the COVID-19 pandemic, we could
not run any experiment sessions in the laboratory. Instead, undergraduate students enrolled at the
University of Toronto participated remotely. Thus, we were able to avoid any coordination issues
stemming from simultaneous strategic decision-making in an online context. Lastly, as payments
in the auxiliary sessions had materialized already, this design can ameliorate utilitarian choices of
the participants in the main experiment. As alluded to above, all experiment sessions took place
online. To avoid quick heuristic-based decision-making, we forced participants to spent at least 10
minutes on each set of instructions and at least 3 minutes on each of the four games against either
opponent type before buttons were activated. Further, we presented all four games in random or-
der to avoid any order effects, and, in addition, gave participants the opportunity to revise their
decisions after they were exposed to all four games and had selected an action choice. Remaining
conscious of possible order effects, we also reversed the opponent order between the two parts of
the experiment. That is, if participants faced always an undergraduate student before a Ph.D. stu-
dent in Economics when choosing an action, then they always faced a Ph.D. student in Economics
before an undergraduate student in the valuation task and vice versa. A possible downside of our
online experiment – though not a characteristic that is unique to our experiment – is the reduc-
tion of control. As such, we may expect noisier data relative to standard laboratory experiments.
Nevertheless, there is no reason to expect behavioral deviations in any systematic way.

4 Results
We break the analysis into five sections. After a brief coherence examination of the valuation data,
we begin our main analysis by presenting the aggregate experimental results focusing first on pref-
erences between 𝐼𝑅 and 𝐷𝑆, and then explore the valuation data across all four games. Next, we
focus on behavior conditional on the opponent’s identity; that is, whether Player 𝑍 was an under-
graduate student of any year or discipline or a Ph.D. student in Economics. Lastly, we delve into
non-choice data embedded in the participants’ notes.

4.1 Elicited Valuations
Before turning to choice behavior and the ranking of 𝐼𝑅 and𝐷𝑆, we first present the empirical valu-
ation data from some of the games to illustrate both that participants exhibit reasonable valuations
and that there are powerful insights to be gained for an outside observer by eliciting participants’
certainty equivalent for each game.

In total, we collected data from𝑁 = 235 participants. The only exclusion restriction for valua-
tions that we impose is consistency with rationality. That is, we exclude behavior characterized by
valuations that exceed the maximum possible payoff given their action choice, for example, playing
action 𝑏with a valuation 𝑣 = 14 in𝐷𝑆,𝑀𝑆, or𝑁𝐸, respectively. Figure 6 displays several empirical
value distributions.

First, we show the empirical value distributions in 𝐷𝑆 by action for 𝑛 = 455 choices; namely,
all choices with consistent valuations irrespective of opponent type. Roughly 76% of choices fall on
action 𝑐, 17% play action 𝑏 and the remaining 7% choose action 𝑎. Participants who play 𝑐 tend to
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Figure 6: Empirical Value Distributions of𝐷𝑆 by action choice; and Empirical Value Distributions
of𝐷𝑆𝑀𝑆, and𝑁𝐸 conditional on Playing Action 𝑐 in𝐷𝑆

value playing 𝐷𝑆 more than participants who chose 𝑎 or 𝑏. This suggests that those who played 𝑐
may of done so because they found it easier to predict the play of others.

Second, we highlight the empirical value distributions in 𝐷𝑆 and both control games condi-
tional on playing action 𝑐 irrespective of opponent type, which leaves us with 𝑛 = 618 choices in
total. Recall that subjects face the exact same payoffs in these three games, so different choices
and valuations in these games must arise from the different strategic structures. The frequency of
action-𝑐 play in𝐷𝑆 is approximately 2−3 times higher compared to those in the two control games,
𝑀𝑆 and𝑁𝐸, respectively. Further, the empirical value distribution for𝐷𝑆 first-order stochastically
dominates those for𝑁𝐸 and𝑀𝑆, suggesting that behavior in𝐷𝑆 is easier to predict relative to𝑁𝐸
and𝑀𝑆.

4.2 Aggregate Choices
We impose one additional exclusion restrictions for the 𝐼𝑅 and 𝐷𝑆 choices in our main analysis.
That is, in addition to imposing consistency of rationality, we focus on observed choices where only
action 𝑐 is played in 𝐷𝑆. Restricting attention to action 𝑐 in 𝐷𝑆 allows us isolate the choices made
by strategic subjects, as the L1 non-strategic type only plays actions 𝑎 or 𝑏 in 𝐷𝑆 and never plays
action 𝑐. Thus, we restrict attention to 𝑛 = 343 choices. That is, we focus on 179 participants facing
an undergraduate student and 164 participants facing a Ph.D. student in Economics.20 To give a
first overview, we present aggregate results of action choices in the diagnostic games. Table 1 offers
a synopsis of the frequency of actions choices in 𝐼𝑅 and𝐷𝑆.

In 𝐼𝑅, approximately 71% of choices are concentrated on action 𝑎, and the remainder is roughly
equally distributed among actions 𝑏, 𝑐, and 𝑑, respectively.

20All analyses reported in the main text are replicated for all participants and choices in our sample. These results are
reported in Appendix A.
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Table 1: Frequency of Action Choices in the Diagnostic Games

Action 𝐼𝑅 𝐷𝑆
𝑎 242/343 —
𝑏 37/343 —
𝑐 37/343 343/343
𝑑 27/343 —

All choices made irrespective of opponent type.

Aggregate choices As a first pass, we summarize choice behavior and the ranking of 𝐼𝑅 and 𝐷𝑆
irrespective of the opponent type. Table 2 lists these results.

Table 2: Aggregate Results

𝐼𝑅 ≻ 𝐷𝑆 𝐼𝑅 ≾ 𝐷𝑆
𝐼𝑅𝑀 Prediction all nil

Ratio 154/343 189/343
Percentage 44.9% 55.1%

All choices made irrespective of opponent type.
𝐼𝑅𝑀 ≡ Iterative ‘top-down’ model of reasoning.

Theobserved choices are clearly at oddswith the predictions of the iterative ‘top-down’model of
reasoning (or Nash equilibrium). While players are predicted to strictly prefer 𝐼𝑅 over𝐷𝑆, less than
half of all observed choices are in line with the prediction. This is the first evidence at the aggregate
choice-level suggesting that participants’ reasoning may fall outside the iterative ‘top-down’ model
of reasoning.

Introducing controls As a next step, we include the two control games in our aggregate-choice
analysis. We are interested in those participants who weakly prefer𝐷𝑆 over 𝐼𝑅, and not those who
may have a preference for smaller games or Nash equilibrium in pure strategies per se.

Table 3: Aggregate Results – Controlling for Best-Response Consistency in All Games
and Equal Valuations of All Small Games

𝐼𝑅 ≻ 𝐷𝑆 𝐼𝑅 ≾ 𝐷𝑆
𝐼𝑅𝑀 Prediction all nil

Control #1 135/291 156/291
B-R Consistency 46.4% 53.6%

Control #2 132/286 154/286
NE Preference 46.2% 53.8%
Control #3 107/213 106/213

Equal Valuations 50.2% 49.8%
All choices made irrespective of opponent type excluding all choices that are inconsistent
with best-responding (“C#1”); preference for Nash equilibrium in pure strategies (“C#2”);

and value𝐷𝑆,𝑀𝑆, and𝑁𝐸 equally (“C#3”). 𝐼𝑅𝑀 ≡ Iterative ‘top-down’ model of reasoning.

To do so, we require that participantsmake choices consistent with best-responding in both𝑀𝑆
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and 𝑁𝐸 games.21 As a result, we are now focussing on 153 participants facing an undergraduate
student and 138 participants facing a Ph.D. student in Economics, respectively. Table 3, Control
#1 lists these results of 𝑛 = 291 observed choices irrespective of opponent type. As is evident,
controlling for best-response consistency at the aggregate choice level does not make a substantial
dent on participants’ overall ranking of 𝐼𝑅 and𝐷𝑆.

Next, we exploit the Nash equilibrium in pure strategies that characterizes both 𝐷𝑆 and 𝑁𝐸.
Here, we exclude those choices that play action 𝑐 in both games and value𝑁𝐸weakly above𝐷𝑆. This
allows us to control for those that may feature an intrinsic preference for Nash equilibrium in pure
strategies per se. By doing so, we focus on 160 participants playing against an undergraduate student
and 126 participants playing against a Ph.D. student in Economics, respectively. The summary
statistics for this control are listed as Control #2 in Table 3. Similar to the previous control, this
control does not alter the overall ranking of the diagnostic games either.

Last, we leverage𝑀𝑆 and 𝑁𝐸 and, in this step, exclude only those choices that value all small
games equally; i.e., 𝑣𝐷𝑆 = 𝑣𝑀𝑆 = 𝑣𝑁𝐸. This allows us to control for those participants who have high
valuations in𝐷𝑆 relative to 𝐼𝑅 not because they deem it easier to predict behavior in this game, but
rather because of an intrinsic preference for smaller games or Nash equilibrium in pure strategies.
This results in concentrating on 113 participants playing against an undergraduate student and 100
participants playing against a Ph.D. student in Economics. These results are reported in Table 3,
Control #3. This control does not make a substantial dent on the overall ranking of 𝐼𝑅 and 𝐷𝑆
either. Overall, the inclusion of the controls does not alter the results. While the ratio of those
who weakly prefer 𝐷𝑆 over 𝐼𝑅 somewhat decreases, the big picture still suggests that participants’
reasoning may fall outside of the iterative ‘top-down’ model of reasoning.22

Aggregate choices – belief that opponent is rational Here, we consider those participants that believe
that their opponents are rational and are confident that Player 𝑍 is rational. Recall that our design
makes the sharpest predictions for these types – unambiguously predicting that participants using
the iterative ‘top-down’ model of reasoning would strictly prefer to play 𝐼𝑅 over 𝐷𝑆. Our design
allows us to identify these participants by exploiting the valuation data collected in the second part
of our experiment. In particular, we now include an additional exclusion restriction by requiring
valuations of 12 ≤ 𝑣 ≤ 12.25 in𝐷𝑆.23 Table 4 summarizes the choice behavior by the ranking of 𝐼𝑅
and𝐷𝑆 irrespective of the opponent type but conditional on believing in the opponent’s rationality.

When requiring players’ belief in rationality, close to two-thirds of 𝑛 = 197 choices rank 𝐷𝑆
above 𝐼𝑅. These are participants whose behavior is consistent with holding confident belief in oth-
ers’ rationality yet they face difficulties in predicting their opponent’s behavior in 𝐼𝑅. This behavior
reflects reasoning that falls outside the iterative ‘top-down’ model of reasoning.
21In this step, we remove participants’ choices of 𝑎 with a valuation 𝑣 > 12, and further exclude those whose valuations
exceed the maximum possible payoff given their action choice in either of the two control games.

22Apotential concernmay arise because we used choice lists to elicit participants’ approximate valuation for each game.
As these lists are discrete we could potentially misclassify participants. Those participants who valued both 𝐼𝑅 and
𝐷𝑆 exactly at 𝑣 = 12.25 could be classified as ranking 𝐷𝑆 weakly above 𝐼𝑅 even though being consistent with the
iterative ‘top-down’ model of reasoning. Of the 𝑛 = 343 choices presented in Table 2, only 29 choices value both
games exactly at 𝑣 = 12.25. For the controls, this reduces further to 10/291 in Control #1 and 7/213 in Control #3,
respectively.

23This results in concentrating on 106 (91) participants playing against an undergraduate student (a Ph.D. student in
Economics).
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Table 4: Aggregate Results – Belief that Opponent Is Rational

𝐼𝑅 ≻ 𝐷𝑆 𝐼𝑅 ≾ 𝐷𝑆
𝐼𝑅𝑀 Prediction all nil

Ratio 72/197 125/197
Percentage 36.5% 63.5%

All choices made irrespective of opponent type
conditional on believing in opponent’s rationality.
𝐼𝑅𝑀 ≡ Iterative ‘top-down’ model of reasoning.

4.3 Empirical Value Distributions
Moving beyond summary statistics, we now turn to the empirical distribution of valuations by the
ranking of 𝐼𝑅 and𝐷𝑆 induced by the valuations. Thus far we only discussed the ordinal information
gathered in our experiment. We now enrich our discussion by leveraging the cardinal information
obtained in the valuation task. Figure 7 visualizes the empirical distributions of the valuations of the
two diagnostic games, 𝐼𝑅 and 𝐷𝑆, as well as the two control games,𝑀𝑆 and𝑁𝐸. For this analysis
we again focus on the 343 choices as summarized in Table 2.

For the diagnostic games, the value distribution for 𝐷𝑆 (𝐼𝑅) is significantly higher (lower) in
stochastic dominance when 𝐷𝑆 ≿ 𝐼𝑅 than 𝐷𝑆 ≺ 𝐼𝑅: two-sample Kolmogorov-Smirnov test pro-
duces 𝑝 < 0.001.24 While differences between how the two “groups” value 𝐼𝑅 and𝐷𝑆 are expected
given how the groups are defined, the value distributions provide further support for the idea that
the behavior of the 𝐷𝑆 ≿ 𝐼𝑅 group refelcts reasoning that falls outside of the iterative ‘top-down’
model of reasoning. First, the large differences between the empirical value distributions in 𝐼𝑅
indicate that the 𝐷𝑆 ≿ 𝐼𝑅 participants face difficulties in modeling and predicting the opponents’
behavior in 𝐼𝑅 – a gamewhere reasoning about rationality plays no predictive role. Second, partici-
pants’ valuations in𝐷𝑆 allows the analyst to infer their (confidence in their) beliefs about rationality:
we can infer that participants with 12 ≤ 𝑣 ≤ 12.25 believe that their opponents are rational. Thus,
the large difference between the empirical value distributions in 𝐷𝑆 indicates that the 𝐷𝑆 ≿ 𝐼𝑅
group is more likely to believe in rationality relative to the𝐷𝑆 ≺ 𝐼𝑅 group.

For the two control games, the empirical value distributions by ranking of 𝐼𝑅 and 𝐷𝑆, the two
groups of interest, overlap and cross each other several times as well. Thus, it is not surprising that
no statistically significant differences can be detected (𝑝 ≥ 0.481). This also supports the hypothesis
that the relative preference for𝐷𝑆 over 𝐼𝑅 between the two groups is not driven by a preference for
small games or Nash equilibrium in pure strategies per se as these two groups value𝑀𝑆 and 𝑁𝐸
similarly.

So far we only visualized the empirical value distributions separately for each game by the rank-
ing of the set of diagnostic games. In Figure 8, we show the empirical value distributions for all
games by the ranking of 𝐼𝑅 and𝐷𝑆.

For the 𝐷𝑆 ≿ 𝐼𝑅 group, the valuation distribution for 𝐷𝑆 first-order stochastically dominates
the valuation distributions of the two control games (both 𝑝 < 0.001). Further, no statistical dif-
ferences are observed when comparing the distributions of the two control games (𝑝 = 0.429). By
24In this discussion of empirical value distributions, all reported 𝑝-values are associated with two-sample Kolmogorov-
Smirnov tests.
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Figure 7: Empirical Value Distributions of All Games by the Ranking of 𝐼𝑅 and𝐷𝑆 for All 𝑛 = 343
Choices. Top Row: The diagnostic games. Left: 𝐼𝑅; Right: 𝐷𝑆. Bottom Row: The control games.
Left: 𝑀𝑆; Right: 𝑁𝐸.

Figure 8: Empirical Value Distributions of 𝐼𝑅,𝐷𝑆,𝑀𝑆, and𝑁𝐸 by Ranking of 𝐼𝑅 and𝐷𝑆
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contrast, when 𝐷𝑆 ≺ 𝐼𝑅, the valuation distributions of all small games overlap and are statistically
indistinguishable from each other with the exception of 𝐷𝑆 and 𝑁𝐸 (𝑝 = 0.035).25 We interpret
these findings as further evidence that for approximately half of our participants,𝐷𝑆 is indeed very
attractive because it permits easier modeling and hence predicting the opponent’s choices. The
other half of participants, however, appear not to distinguish between the small games and, inter
alia, have strictly higher valuations for 𝐼𝑅 than𝐷𝑆.

4.4 Opponent Type
We now turn to choices at the subject-level and discuss differences in behavior by opponent type.
We maintain all our exclusion restrictions discussed above but as we are interested in participants
that satisfy these exclusion restrictions against both opponent types – the intersection – we thus
concentrate now on 𝑛 = 144 participants. Thus far, we have established that approximately half of
the choices fall outside the iterative ‘top-down’ model of reasoning. Recall that this turns out to be
true even if they believe their opponents are rational. Among this subset of choices, approximately
two-thirds of choices fall outside the model.

Table 5 shows the comparative statics of the ranking over the set of diagnostic games conditional
on the opponent’s identity; that is, whether participants played against an undergraduate student
of any year or discipline or a Ph.D. student in Economics.

Table 5: Ranking of 𝐼𝑅 and𝐷𝑆 by Opponent Type

Undergraduate
𝐼𝑅 ≻ 𝐷𝑆 𝐼𝑅 ≾ 𝐷𝑆

Ph
.D
.

𝐼𝑅 ≻ 𝐷𝑆 𝐼𝑅𝑀 Prediction 𝑎𝑙𝑙 𝑛𝑖𝑙
Ratio 46/144 23/144

Percentage 31.9% 16.0%

𝐼𝑅 ≾ 𝐷𝑆 𝐼𝑅𝑀 Prediction 𝑛𝑖𝑙 𝑛𝑖𝑙
Ratio 18/144 57/144

Percentage 12.5% 39.6%
𝐼𝑅𝑀 ≡ Iterative ‘top-down’ model of reasoning.

These numbers are not overly sensitive to the opponent’s type: 71.5% of participants exhibit
a stable model of reasoning irrespective of the opponent’s characteristics. That is, the majority of
participants respond similarly to both undergraduate students and Ph.D. students in Economics.
Specifically, about 32% of participants choices are consistent with the iterative ‘top-down’ model of
reasoning against both undergraduate students and Ph.D. students in Economics in 𝐼𝑅 and about
40% are inconsistent against both. Among the remainder, of those who respond to the opponent’s
type, the results are split. 12.5% are consistent with the iterative ‘top-down’ model of reasoning
against undergraduate students and not Ph.D. students in Economics, while 16% are consistent with
the iterative reasoningmodel against Ph.D. students in Economics but not undergraduate students.
25Differences in valuation distributions are not significant: 𝑝 = 0.244 from comparing games𝐷𝑆 vs.𝑀𝑆 and 𝑝 = 0.305
for𝑀𝑆 vs. 𝑁𝐸, respectively.
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By exploiting the cardinal information collected in the valuation task, we are able to detect not
only ordinal differences in the ranking over the diagnostic games but alsomore nuanced differences:
whether 𝐷𝑆 becomes relatively more or less attractive conditional on both the preference relation
over𝐷𝑆 and 𝐼𝑅 aswell as the opponent’s sophistication. The corresponding difference in differences
of valuations 𝑣𝐼𝑅 − 𝑣𝐷𝑆 by opponent type are depicted in Figure 9.

PhD: IR ≻ DS & UG: IR ≻ DS PhD: IR ≻ DS & UG: IR ≾ DS

PhD: IR ≾ DS & UG: IR ≻ DS PhD: IR ≾ DS & UG: IR ≾ DS

Figure 9: Difference in Differences of Valuations of 𝐼𝑅 and 𝐷𝑆 by Ranking of 𝐼𝑅 and 𝐷𝑆 and by
Opponent Type

As visualized in Figure 9, depending on the preference relation over the games by opponent
type, participants indeed value the games differently when facing either an undergraduate student
or a Ph.D. student in Economics. On one hand, when 𝐷𝑆 ≿ 𝐼𝑅 against both types, 𝐷𝑆 becomes
relatively less valuable when playing against a Ph.D. student in Economics. This difference is sta-
tistically significant at the 5%-level using both t-test and Wilcoxon’s signed-rank test (𝑝 < 0.026).
On the other hand, when 𝐷𝑆 ≺ 𝐼𝑅, 𝐷𝑆 becomes relatively more valuable when facing a Ph.D. stu-
dent in Economics. This difference, however, is not statistically significant (𝑝 > 0.257 for both
tests). Naturally, whenever 𝐷𝑆 ≺ 𝐼𝑅 against one opponent type but not the other, the differences
are statistically significant at the 1%-level (all 𝑝 < 0.001). Overall, around 32% of participants can
predict the choices of both opponent types and roughly 38% cannot predict the choices of either.
Both groups, however, display stark asymmetries by type: 𝐷𝑆 becomes relatively more (less) attrac-
tive when facing a Ph.D. student in Economics whenever the participant is able (unable) to predict
the choices of both (either) opponent types. The direction of these asymmetries in the observed
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choices by opponent type firmly surprised us. If anything, we conjectured 𝐷𝑆 becoming relatively
more attractive when playing against a Ph.D. student in Economics conditional on experiencing
difficulties in predicting the opponent’s choices. While these findings indeed surprised us, there
are obvious explanations for such behavior. To begin with, we conjectured that the – carefully de-
signed – attractiveness of 𝐷𝑆 relative to 𝐼𝑅 would be relatively more important for Ph.D. students
in Economics than undergraduate students. Put differently, we conjectured participants to be more
(less) likely to hold the belief that the opponent is rational when playing against (undergraduate)
Ph.D. students; which in turn dominates the potential increased unpredictability of Ph.D. students
in 𝐼𝑅. However, the reverse occurred in our data with the unpredictability of Ph.D. students in 𝐼𝑅
dominating the “rationality-impact” in 𝐷𝑆. The findings do not qualitatively change when we re-
strict attention to those participants who hold the belief that their opponent is rational. Participants
face more difficulties when predicting the opponent’s choices in 𝐼𝑅 against Ph.D. students relative
to undergraduate students. When𝐷𝑆 is ranked above 𝐼𝑅 against both types,𝐷𝑆 still becomes rela-
tively less enticingwhen playing against a Ph.D. student in Economics. This difference is statistically
significant at the 5%-level using both t-test and Wilcoxon’s signed-rank test (𝑝 < 0.034). When𝐷𝑆
is ranked below 𝐼𝑅,𝐷𝑆 still becomes relatively more alluring when facing a Ph.D. student. It is not
statistically significant (𝑝 > 0.160 for both tests), as in the aggregate-choice analysis. As above,
when 𝐷𝑆 is ranked above 𝐼𝑅 against one opponent type but not the other, the differences are also
statistically significant at the 1%-level (all 𝑝 < 0.008).

Robustness test As a further robustness test and to complement the non-parametric analysis and
key elements discussed so far in this section, we ran ordinary least-square regressions with random
effects controlling for order effects as well as the opponent order. In particular, we regressed the
difference in valuations of 𝐼𝑅 and 𝐷𝑆, 𝑣𝐼𝑅 − 𝑣𝐷𝑆, on the opponent dummy PhD, which is 0 when
facing an undergraduate student and 1 when playing against a Ph.D. student in Economics, and the
valuations for both𝑀𝑆 and𝑁𝐸. Further, we include the game order dummyDS before IR, which is
0 if 𝐼𝑅 is displayed before𝐷𝑆 and 1 if𝐷𝑆 is shown before 𝐼𝑅. In addition, we also include the oppo-
nent order dummy PhD before UG, which is 0 if participants played first against an undergraduate
student and afterwards against a Ph.D. student in Economics in the first part of the experiment and
1 if the order is reversed.

To account for the fact that we observe each participant repeatedly and behavior across games
for the same participant is not independent, we treat each participant as our units of statistically
independent observations. We first split our sample by preference relation over the set of diagnostic
games and opponent type (= 2× 2) as in Table 5 and then estimate the model using the full sample.
As above, we exclude participants from our analysis whose valuations exceed the maximum pos-
sible payoff given their action, those who played any other action than 𝑐 in 𝐷𝑆, and those who are
inconsistent with best-responding in𝑀𝑆 and𝑁𝐸.26 Table 6 lists the results from this analysis.

We find a strong effect of the observed characteristic of the opponent, Ph.D., on the difference in
valuations of 𝐼𝑅 and𝐷𝑆 for all ranking as long as𝐷𝑆 ≿ 𝐼𝑅 against at least one opponent type. This
is also mildly true for the full sample, irrespective of the ranking over the set of diagnostic games.
As expected, we do not find a strong effect of type when 𝐷𝑆 ≺ 𝐼𝑅. These estimation results are
26We replicated the same analysis on the entire sample and report the results in Appendix A.
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Table 6: OLS Estimations with Random Effects of Difference in Valuations of 𝐼𝑅 and𝐷𝑆

Ranking by UG: 𝐼𝑅 ≻ 𝐷𝑆 UG: 𝐼𝑅 ≾ 𝐷𝑆 UG: 𝐼𝑅 ≻ 𝐼𝑅 UG: 𝐼𝑅 ≾ 𝐷𝑆 All
Opponent PhD: 𝐼𝑅 ≻ 𝐷𝑆 PhD: 𝐼𝑅 ≻ 𝐷𝑆 PhD: 𝐼𝑅 ≾ 𝐷𝑆 PhD: 𝐼𝑅 ≾ 𝐷𝑆

𝑣𝐼𝑅 − 𝑣𝐷𝑆 𝑣𝐼𝑅 − 𝑣𝐷𝑆 𝑣𝐼𝑅 − 𝑣𝐷𝑆 𝑣𝐼𝑅 − 𝑣𝐷𝑆 𝑣𝐼𝑅 − 𝑣𝐷𝑆
Intercept 2.571∗∗∗ −0.743 2.772 −1.566∗ 0.246

(0.933) (1.338) (1.742) (0.925) (0.866)
PhD −0.038 3.308∗∗∗ −2.620∗∗∗ 0.357∗∗ 0.291∗

(0.135) (0.378) (0.502) (0.179) (0.173)
𝑣𝑀𝑆 -0.050 -0.119 -0.216 0.079 -0.071

(0.091) (0.111) (0.174) (0.065) (0.067)
𝑣𝑁𝐸 -0.018 0.046 0.105 -0.025 0.073

(0.088) (0.119) (0.160) (0.076) (0.073)
𝐷𝑆 before 𝐼𝑅 -0.030

(0.277)
𝑃ℎ𝐷 before 𝑈𝐺 -0.197

(0.281)
𝜎𝜖 0.619 1.276 1.141 0.884 1.375
𝜎𝑢 1.241 0.549 1.215 1.025 1.471
N 96 53 33 109 291
(Between) R-squared 0.030 0.514 0.426 0.031 0.012
∗∗∗Significant at the 1 percent level; ∗∗Significant at the 5 percent level; ∗Significant at the 10 percent level

in line with the difference in differences of valuations by opponent type and by ranking of 𝐼𝑅 and
𝐷𝑆, as depicted in Figure 9. We do not find any indication of order effects, either due to presenting
participants 𝐼𝑅 or 𝐷𝑆 before the other as well as playing each of the four games first against an
undergraduate student or a Ph.D. student in Economics in the first part of the experiment.

4.5 Non-Choice Data
Recall that we gave participants the opportunity to write notes to their “future-self.” Below each of
the two diagnostic games as well as two control games against either opponent type, participants
could write down the reasoning behind their choice of action in a text box. If participants decided
to type anything in these text boxes, then it was displayed later on again in the experiment: the
first time when participants were prompted to confirm their choice of action and a second time
when facing the valuation task. We did not force participants to write anything in these text boxes,
however, we told them that these notes would help them when making choices in the second part
of the experiment. As expected, not all participants made use of this opportunity. Those who did,
however, give us the opportunity to use their notes as “the window of the strategic soul.”27 Using
both action choice and valuation data, we documented evidence at the aggregate choice-level that
suggests that participants may value the predictability of their opponents’ behavior. Moreover, we
showed that this observation is even starker if participants believe that their opponents are rational
with 63.5% of choices ranking 𝐷𝑆 above 𝐼𝑅. Among this subset of participants, we are curious to
see whether there is any suggestive evidence of participants indicating that the opponents’ actions
27Vincent Crawford coined this term in Crawford (2008).
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are predictable in 𝐷𝑆 and 𝐼𝑅, and if there is any difference by the ranking of 𝐼𝑅 and 𝐷𝑆. We have
established that 197 choices are consistent with holding the belief that their opponent is rational,
meaning that the player is confident that Player 𝑍 is rational. In 113 (143) of these choices, par-
ticipants decided to write notes in 𝐷𝑆 (𝐼𝑅). Table 7 provides summary statistics for this subset of
choices by the ranking of the set of diagnostic games.

Table 7: Notes – Belief that Opponent Is Rational

Indication that Player 𝑍’s Action Is Predictable
𝐼𝑅 𝐷𝑆

yes no yes no

𝐼𝑅 ≻ 𝐷𝑆 Ratio 23/53 31/90 18/60 25/53
Percentage 43.4% 34.4% 30.0% 47.2%

𝐼𝑅 ≾ 𝐷𝑆 Ratio 30/53 59/90 42/60 28/53
Percentage 56.6% 65.6% 70.0% 52.8%

Clearly, those who rank 𝐷𝑆 above 𝐼𝑅 indicate more frequently that the opponents’ action is
predictable in 𝐷𝑆 relative to those who rank 𝐷𝑆 below 𝐼𝑅. Those with 𝐷𝑆 ≿ 𝐼𝑅 indicate also more
frequently that Player𝑍’s action is predictable in 𝐼𝑅 compared to thosewith𝐷𝑆 ≺ 𝐼𝑅. The𝐷𝑆 ≿ 𝐼𝑅-
group also appears to have an easier time predicting the opponents’ action in 𝐷𝑆 relative to 𝐼𝑅.
Although participants’ notes cannot be quantified in a strict sense, they nevertheless provide further
qualitative support for the idea that the𝐷𝑆 ≿ 𝐼𝑅 group prioritizes reasoning about rationality as an
organizing principle.

5 Theoretical Analysis
In Section 2, we provided intuitive explanations for our identification strategy. In this section, we
elaborate and present a formal analysis.

5.1 Theory
Let 𝐺 = (𝑆1, 𝑆2, 𝑢1, 𝑢2) be a finite 2-player game where 𝑆𝑖 is player 𝑖’s strategy set, with |𝑆𝑖| = 𝑛, and
𝜋𝑖 ∶ 𝑆1 × 𝑆2 → ℝ is player 𝑖’s pecuniary payoff function, which depends on player 𝑖 and the other
player’s (−𝑖) strategies. We allow for general expected-utility preferences overmonetary payoffs. Let
U be the set of vonNeumann-Morgenstern utility functions, which are strictly increasing functions
mapping ℝ to ℝ. For any 𝑢𝑖 ∈ U, the function 𝑢𝑖 ∘ 𝜋𝑖 ∶ 𝑆𝑖 × 𝑆−𝑖 → ℝ represents the utility of
player 𝑖. Denote by 𝜇−𝑖 ∈ 𝛥(𝑆−𝑖) player 𝑖’s beliefs over player −𝑖’s strategies. Extend 𝑢𝑖(𝜋𝑖(𝑆𝑖, 𝑆−𝑖)) to
𝑢𝑖(𝜋𝑖(𝑆𝑖, 𝜇−𝑖)) in the usual way to represent player 𝑖’s expected utility.

Let𝔹ℝ 𝑖 be the best response set for each player 𝑖. This set specifies the strategies that are a best
response for player 𝑖 given both player 𝑖’s preferences, 𝑢𝑖 ∈ U, and the belief they hold about the
play of the other player, 𝜇−𝑖. Formally, for 𝑢𝑖 ∈ U and 𝜇−𝑖 ∈ 𝛥(𝑆−𝑖),

𝔹ℝ 𝑖[𝑢𝑖, 𝜇−𝑖] ∶= {𝑠𝑖 ∈ 𝑆𝑖 ∶ 𝑢𝑖(𝜋𝑖(𝑠𝑖, 𝜇−𝑖)) ≥ 𝑢𝑖(𝜋𝑖(𝑟𝑖, 𝜇−𝑖)), for each 𝑟𝑖 ∈ 𝑆𝑖}.
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We will be interested in two solution concepts. First, the iterative ‘top-down’ model of rea-
soning, which captures how players reason when they can model the behavior of others. Second,
the concept of 2-rationalizable strategies, which incorporates the assumption that player 𝑖 is ratio-
nal and believes player −𝑖 is rational. This concept captures how players reason when they cannot
model the behavior of others. We define both below.

Iterative ‘top-down’ model of reasoning This model is anchored by the non-strategic L1 behavior
characterized by ≻1. Let 𝐿1𝑖 = {𝑠𝑖 ∈ 𝑆𝑖|∄ 𝑠𝑖′ ∈ 𝑆𝑖 where 𝑠𝑖′ ≻1 𝑠𝑖} be the set of actions that can be
played by the L1 type. This is the set of actions that are undominated according to ≻1.

In Section 2, we discussed the possibility of extending the model to allow for uncertainty over
others’ rationality. We do this by defining a L0 type that is non-strategic and plays all actions – even
strictly dominated actions – with positive probability. Specifically, we impose the restriction that
the L0 type plays uniformly random: 𝜇0𝑖 (𝑠) = 1|𝑆𝑖| for all 𝑠 ∈ 𝑆𝑖. Strategic types that place positive
probability on facing the L0 type will then be uncertain about the rational play of others.

The behavior of all L𝑘 types can be defined recursively, anchored on the behavior of the L0 and
L1 types. Denote by 𝐿𝑘𝑖 the set of actions consistent with 𝑘 iterations of reasoning by player 𝑖. Then,
for 𝑘 ≥ 2, the set 𝐿𝑘𝑖 is the set of strategies 𝑠𝑖 in 𝔹ℝ 𝑖[𝑢, 𝜇−𝑖] such that there exists some 𝑢 ∈ U and
𝜇−𝑖 ∈ 𝛥(𝑆−𝑖) that satisfies the following two conditions. First, beliefs over the play of others must
take the following form: 𝜇−𝑖 = 𝑝 ⋅ 𝜇0−𝑖 + (1 − 𝑝) ⋅ 𝜂−𝑖 for some 𝑝 ∈ [0, 1] and 𝜂−𝑖 ∈ 𝛥(𝑆−𝑖) with
𝜂−𝑖(∪𝑘−1𝑗=1𝐿

𝑗
−𝑖) = 1 . This ensures that player 𝑖’s beliefs about player −𝑖’s behavior are consistent with

the assumption that players’ reasoning is organized in a ‘top-down’ fashion. Put differently, player
𝑖 can only assign positive probability on actions played by types with levels strictly less than 𝑘.
Second, 𝑠𝑖 ∈ 𝔹ℝ 𝑖[𝑢, 𝜇−𝑖]. This condition ensures that player 𝑖’s strategy 𝑠𝑖maximizes their expected
utility given player 𝑖’s preferences 𝑢, and the belief that player −𝑖 plays according to 𝜇−𝑖. We will
refer to any action 𝑎𝑖 in 𝐿𝑘𝑖 as an action played by the L𝑘 type for player 𝑖.

2-rationalizability The solution concept of 2-rationalizable strategies incorporates both the as-
sumption of rationality and belief in rationality. We can define this solution concept recursively in
the following way. Let 𝑆1𝑖 be the set of strategies 𝑠𝑖 such that there exists some 𝑢 ∈ U and 𝜇−𝑖 ∈ 𝛥(𝑆−𝑖)
with 𝑠𝑖 ∈ 𝔹ℝ 𝑖[𝑢, 𝜇−𝑖]. The set 𝑆1𝑖 includes all rational strategies for player 𝑖. These are a best response
for player 𝑖 given their preference 𝑢 and beliefs 𝜇−𝑖 about player −𝑖’s play. We refer to any action 𝑎𝑖
in 𝑆1𝑖 as a 1-rationalizable strategy. Given this, we can define 𝑆2𝑖 as the set of strategies 𝑠𝑖 so that there
exists some 𝑢 ∈ U and 𝜇−𝑖 ∈ 𝛥(𝑆−𝑖) that satisfies the following conditions. First, 𝑠𝑖 ∈ 𝔹ℝ 𝑖[𝑢, 𝜇−𝑖],
which ensures that 𝑠𝑖 maximizes player 𝑖’s expected utility given the belief that player −𝑖 behaves
according to 𝜇−𝑖. Second, 𝜇−𝑖(𝑆1−𝑖) = 1. This ensures that player 𝑖 can only place positive probability
on 1-rationalizable strategies, which are the strategies consistent with the assumption that player
−𝑖 is rational, and hence with the assumption that player 𝑖 believes rationality. We will refer to any
action 𝑠𝑖 in 𝑆2𝑖 as a 2-rationalizable strategy.28

28In order for the solution concept to be free of assumptions about risk preferences we explicitly allow players to hold
any expected utility preferences. The same result could be achieved by specifiying a single preference specifica-
tion for each player with preferences characterized by extreme risk aversion. This follows from Battigalli, Cerreia-
Vioglio, Maccheroni, and Marinacci (2016) and Weinstein (2016) who show that risk aversion expands the set of
k-rationalizable actions (while risk loving contracts the set).
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5.2 Revisiting the Diagnostic Games
The iterative-reasoning game “𝐼𝑅” First, note that we can denote any probability measure 𝑝 ∈
𝛥(𝑆1) (and 𝑝 ∈ 𝛥(𝑆2), respectively) as a 4-tuple (𝑝1, 𝑝2, 𝑝3, 𝑝4). This represents the probabilities
over {𝑎, 𝑏, 𝑐, 𝑑} (and {𝐴, 𝐵, 𝐶,𝐷}, respectively). Then in this game, L0 behavior is given by 𝜇0 =
(1/4, 1/4, 1/4, 1/4) for both players. Further, recall from Section 2 that 𝐿11 = {𝑎, 𝑏} and 𝐿12 = {𝐶}.

The𝐿𝑘𝑖 sets can then be calculated recursively given the anchoring L0 and L1 behavior. Let 𝑘 ≥ 2.
For Player 1, the L𝑘 type can hold any belief about Player 2’s behavior that is a mixture between 𝜇0

and the two degenerate beliefs: (0, 1, 0, 0) and (0, 0, 1, 0). In other words, beliefs take the form
𝜇2 = (𝑝0/4, 𝑝0/4 + 𝑝𝐵, 𝑝0/4 + 𝑝𝐶, 𝑝0/4) for some 𝑝0, 𝑝𝐵, 𝑝𝐶 ∈ [0, 1] with 𝑝0 + 𝑝𝐵 + 𝑝𝐶 = 1. A strategy
𝑠𝑖 is in 𝐿𝑘𝑖 if there exists some 𝑢 ∈ U such that 𝑠𝑖 ∈ 𝔹ℝ 𝑖[𝑢, 𝜇2]. Clearly, actions 𝑎 and 𝑏 are in 𝐿𝑘1 as
they maximizes the expected payoff under the player’s belief when 𝑝𝐶 = 1 and 𝑝𝐵 = 1, respectively.
Importantly, we also need to ensure that 𝑎 and 𝑏 are the only choices that maximizes expected
utility for every von Neumann-Morgenstern utility function 𝑢.29 We begin with the observation
that a strategy 𝑠𝑖 ∈ 𝑆𝑖 induces a lottery through the belief 𝑝 ∈ 𝛥(𝑆−𝑖), which we denote 𝑠𝑖,𝑝. For
example, the action 𝑎 induces the lottery 𝑎𝜇2 = (13, 𝑝0/4; 12, 𝑝0/4 + 𝑝𝐵; 11, 𝑝0/4 + 𝑝𝐶; 0, 𝑝0/4). This
lottery first-order stochastically dominates the lotteries 𝑐𝜇2 and 𝑑𝜇2 . It follows that actions 𝑐 and
𝑑 cannot maximize the player’s expected utility for any utility function 𝑢. Thus, we conclude that
𝐿𝑘1 = {𝑎, 𝑏}.

For Player 2, the L𝑘 type can hold any belief about Player 1’s behavior that is a mixture between
𝜇0 and the two degenerate beliefs: (1, 0, 0, 0) and (0, 1, 0, 0). In other words, beliefs take the form
𝜇1 = (𝑝0/4 + 𝑝𝑎, 𝑝0/4 + 𝑝𝑏, 𝑝0/4, 𝑝0/4) for some 𝑝0, 𝑝𝑎, 𝑝𝑏 ∈ [0, 1] with 𝑝0 + 𝑝𝑎 + 𝑝𝑏 = 1 and 𝑝0 < 1.
Consider the case where 𝑝𝑎 ≠ 1, then the lottery 𝐶𝜇1 first-order stochastically dominates the lotter-
ies𝐴𝜇1 and𝐷𝜇1 . Next, consider the case where 𝑝𝑎 = 1, then the lottery 𝐵𝜇1 first-order stochastically
dominates the lottery 𝑥𝜇1 for 𝑥 ∈ {𝐴, 𝐶,𝐷}. Thus, we conclude that 𝐿𝑘2 = {𝐵, 𝐶}.

𝐿𝑘1 = {𝑎, 𝑏} if 𝑘 ≥ 1 𝐿𝑘2 =
{
{
{

{𝐶} if 𝑘 = 1
{𝐵, 𝐶} if 𝑘 ≥ 2

Wenow turn to the predictions when Player 1 only believes that Player 2 is rational, and nothing
beyond that. This includes the scenario where Player 1 believes that Player 2 may be more sophis-
ticated than Player 1. We are interested specifically in the 2-rationalizable set for Player 1, which
captures the case of a player who is rational and believes that Player 2 is rational. Here, Player 1
believes that Player 2 plays a 1-rationalizable strategy. The 2-rationalizable set for Player 1 and the
1-rationalizable set for Player 2 are:

𝑆21 = {𝑎, 𝑏, 𝑐, 𝑑} 𝑆12 = {𝐴, 𝐵, 𝐶,𝐷}

29For this we will rely on the following equivalence: a lottery 𝑝 first-order stochastically dominates lottery 𝑞 if and only
if 𝑝 is preferred to 𝑞 for all 𝑢 ∈ U.
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It is straightforward to see that all actions for Player 2 are 1-rationalizable. This is the case as
each action maximizes expected payoffs under some degenerate belief about the play of Player 1.
It follows that all actions are 2-rationalizable for Player 1 as each action for Player 1 maximizes
expected payoffs under some degenerate belief about Player 2’s behavior.

Lastly, we elicited participants’ valuation for each game, i.e., their certainty equivalent. Since
player’s utility function is monotone, the analyst can infer their ranking over the games. Moreover,
the valuations reveal important information about participants’ beliefs.

In the iterative ‘top-down’ model of reasoning, restricting attention to types that are rational
and believe that their opponent is rational confines attention to types that assign zero weight on
others being the L0 type. The expected payoff in 𝐼𝑅must be strictly greater than 12 for these types.
It is straightforward to confirm this claim by setting 𝑝0 = 0 in the above arguments. This means
that any type holds a belief that is a mixture of (0, 1, 0, 0) and (0, 0, 1, 0). For any such belief 𝜇2 =
𝑝(0, 1, 0, 0)+ (1−𝑝)(0, 0, 1, 0), the lottery 𝑎𝜇2 = (12, 𝑝; 13, (1−𝑝)) delivers a payoff strictly above 12
whenever 𝑝 ≠ 1, and the lottery 𝑏𝜇2 = (14, 𝑝; 0(1 − 𝑝)) delivers a payoff of 14 whenever 𝑝 = 1. To
summarize, playerswho are rational andhold the belief that their opponents are rational believe that
they can guarantee themselves a payoff that is strictly greater than 12. It follows that the certainty
equivalent of 𝐼𝑅 for any expected utility player who believes that their opponent is rational is strictly
above 12.

Caution is potentially warranted if Player 1 is ambiguity averse as they may value 𝐼𝑅 at 12. This,
however, can only occur under an extreme form of ambiguity aversion coupled with the player
holding degenerate beliefs. More precisely, it requires Player 1 to play the “safe” action 𝑎, to have
maxmin expected-utility preferences and their set of priors must include beliefs that Player 2 plays
𝐵 with certainty and a prior that assigns a probability strictly less than 6/7 that Player 2 plays 𝐵.30

Moving to payoffswhen applying the concept of 2-rationalizability. A player that believes others
are rational can hold any belief over Player 2 choosing a 1-rationalizable action. This means that in
𝐼𝑅 Player 1 can hold any belief about the play of Player 2. In this case, such players may not believe
that they can guarantee themselves any certain payoff. Moreover, one might reasonably conjecture
these expected payoffs to be less than 12.

The dominance-solvable game “𝐷𝑆” As in 𝐼𝑅, we first introduce the predictions of the level-𝑘
model. In this game, the L0 behavior is given by the 3-tuple 𝜇0 = (1/3, 1/3, 1/3) for both players.
Further, recall from Section 2 that 𝐿11 = {𝑎, 𝑏} and 𝐿12 = {𝐴}.

The𝐿𝑘𝑖 sets can then be calculated recursively given the anchoring L0 and L1 behavior. Let 𝑘 ≥ 2.
For Player 1, the L𝑘 type can hold any belief about Player 2’s behavior that is a mixture between 𝜇0

and the degenerate belief: (1, 0, 0). In other words, beliefs take the form 𝜇2 = (𝑝0/3 + 𝑝𝐴, 𝑝0/3, 𝑝0/3)
for some 𝑝0, 𝑝𝐴 ∈ [0, 1] with 𝑝0 + 𝑝𝐴 = 1. A strategy 𝑠𝑖 is in 𝐿𝑘𝑖 if there exists some 𝑢 ∈ U such
that 𝑠𝑖 ∈ 𝔹ℝ 𝑖[𝑢, 𝜇2]. Clearly, action 𝑎 and 𝑐 are in 𝐿𝑘1 as they maximizes the expected payoff under
the player’s belief when 𝑝0 = 1 and 𝑝𝐴 = 1 respectively. Further, notice that the lottery 𝑏𝜇2 is not
first-order stochastically dominated by either lotteries 𝑎𝜇2 or 𝑐𝜇2 , this means we can find some 𝑢 ∈ U
30Whether this is an important concern is an empirical question. We can exploit participants’ actions and valuations in
the control games to evaluate if ambiguity aversion governs participants’ valuations. If we allow formaxmin expected
utility preferences, and allow that the set of priors of a player of level (𝑘 + 1) includes all degenerate priors consistent
with the strategies in 𝐿𝑘2 in the control games, then (for any action in) both𝑀𝑆 and𝑁𝐸 have to be valued at 8. In our
data, of all choices, only 1 choice exhibits such extreme form of ambiguity aversion.
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such that 𝑏 ∈ 𝔹ℝ 𝑖[𝑢, 𝜇2]. Thus, 𝐿𝑘1 = {𝑎, 𝑏, 𝑐}.
Turning to the behavior of the L𝑘 type of Player 2, this type can hold any belief about Player 1’s

behavior that is a mixture between 𝜇0 and the degenerate beliefs: (1, 0, 0), (0, 1, 0) and (0, 0, 1). In
other words, a L𝑘 type can hold any beliefs over Player 1’s play, 𝜇1 ∈ 𝛥(𝑆1) However, notice that
Player 2 has a strictly dominant strategy, this means that 𝐴 is always the best response for Player
2 regardless of her beliefs. In other words, the lottery 𝐴𝜇1 first-order stochastically dominates the
lotteries 𝐵𝜇1 and 𝐶𝜇1 . Thus we conclude that 𝐿𝑘1 = {𝐴}.

𝐿𝑘1 =
{
{
{

{𝑎, 𝑏} if 𝑘 = 1
{𝑎, 𝑏, 𝑐} if 𝑘 ≥ 1

𝐿𝑘2 = {𝐴} if 𝑘 ≥ 1

Lastly, we briefly discuss the 2-rationalizable predictions. Again, since 𝐴 is strictly dominant
for Player 2, it is the unique 1-rationalizable action. It follows that the only 2-rationalizable action
for Player 1 is 𝑐.

𝑆21 = {𝑐} 𝑆12 = {𝐴}

In this game, a rational type who believes that their opponent is rational must hold beliefs of the
form (1, 0, 0). Such players believe that they can guarantee themselves a payoff of exactly 12 with
certainty. Notice that reasoners who cannot model and hence predict Player 2’s behavior – beyond
the belief that Player 2 should play a 1-rationalizable strategy – might reasonably rank 𝐷𝑆 above
𝐼𝑅.

If Player 1 plays 𝑐 and values the game less that 12 it reveals to the analyst that the player is
not confident that Player 2 is rational. Further, such valuations shed light on whether the simpler
iterative reasoning model from Section 2 or the more general iterative ‘top-down’ model of reason-
ing that explicitly allows for uncertainty over rationality and dispersed beliefs predicts participants’
behavior more accurately.

Player 1’s preferences over 𝐼𝑅 and𝐷𝑆 We first restrict attention to players that are rational and be-
lieve that their opponents are rational. Consider the preferences of such types over the two diagnos-
tic games: 𝐼𝑅 and𝐷𝑆. Although𝐷𝑆 has a smaller strategy space compared to 𝐼𝑅 and is dominance-
solvable, the game’s expected payoff of 12 is strictly lower than the expected payoff of 𝐼𝑅 in the iter-
ative ‘top-down’ model of reasoning. In other words, a ‘top-down’ iterative-reasoner should strictly
prefer to play 𝐼𝑅 over 𝐷𝑆. We now relax the assumption of belief in rationality. When consider-
ing the iterative ‘top-down’ model of reasoning, this means that we allow players to place positive
weight on the L0 type. Fix 𝑝0 ∈ [0, 1) as the probability assigned to the L0 type. In 𝐼𝑅, the belief of a
‘top-down’ reasoner takes the following form: 𝜇𝐼𝑅2 = 𝑝0(1/4, 1/4, 1/4, 1/4) +𝑝𝐵(0, 1, 0, 0) +𝑝𝐶(0, 0, 1, 0)
for some 𝑝𝐵, 𝑝𝐶 ∈ [0, 1] with 𝑝0 + 𝑝𝐵 + 𝑝𝐶 = 1. In 𝐷𝑆, the belief of such reasoner is 𝜇𝐷𝑆2 =
𝑝0(1/3, 1/3, 1/3) + (1 − 𝑝0)(1, 0, 0).

First, notice that the lottery 𝑎𝐼𝑅𝜇𝐼𝑅2 = (0, 𝑝0/4; 12, 𝑝0/4+𝑝𝐵; 13, 𝑝0/4+𝑝𝐶; 11, 𝑝0/4) first-order stochas-
tically dominates the lottery 𝑎𝐷𝑆𝜇𝐷𝑆2 = (0,

𝑝0/3 + 𝑝𝐴; 12, 𝑝0/3; 11, 𝑝0/3) for all 𝑝0, 𝑝𝐵 and 𝑝𝐶. Further, the
lottery 𝑎𝐼𝑅𝜇𝐼𝑅2 also first-order stochastically dominates the lottery 𝑐𝐷𝑆𝜇𝐷𝑆2 = (12, 1 −

2𝑝0/3; 8, 𝑝0/3; 0, 𝑝0/3; )

29



for all 𝑝0, 𝑝𝐵 and 𝑝𝐶. Thus, any iterative ‘top-down’ reasoner prefers to play 𝐼𝑅 over actions 𝑎 or 𝑐
in the𝐷𝑆 game, regardless of risk preferences.31

6 Concluding Remarks
In iterative reasoning models, each player best-responds to belief that other players reason to some
finite level. In this paper, we propose a novel behavior that captures players holding the belief that
their opponent could be rational but they cannot model their behavior. Reverting to our example
from the introduction, it encompasses a situation where a player believes that their opponent can
reason to a higher level than they do. We developed a novel experimental design that permits us to
identify such behavior, and evaluate it experimentally.

We find that approximately half of the choices made by participants whose reasoning falls out-
side the iterative ‘top-down’ model of reasoning. This is true especially if they believe their oppo-
nents are rational. Among those, 64% behave inconsistently with the iterative ‘top-down’ model.

Interestingly, approximately 72% of participants exhibit a stablemodel of reasoning irrespective
of the opponent’s characteristics. Among the remainder, the results are split: around 12% canmodel
the behavior of undergraduate students but not of Ph.D. students, while around 16% can model the
behavior of Ph.D. students but not of undergraduate students.

To conclude, we document evidence that behavior may fall outside the iterative ‘top-down’
model of reasoning, yet players may still use alternative models, such as rationality, to predict their
opponents behavior.

31The only potential caveat here is that there may be an iterative ‘top-down’ reasoner who is extremely risk seeking
and at the same time very pessimistic about the rationality of others (high 𝑝0), and as such prefers the lottery 𝑏𝐷𝑆𝜇𝐷𝑆

2
=

(5, 𝑝0/3; 13, 1 − 2𝑝0/3; 0, 𝑝0/3) over any lotteries induced by 𝐼𝑅. Such choices are extremely rare in our data. Of 470
choices in total, only 8 participants choose to play 𝑏 in 𝐷𝑆 and value the game at 13 ≤ 𝑣 ≤ 13.25. As in the analysis
presented in Section 4, if we control for such players by focusing on those who play 𝑐 in 𝐷𝑆, the iterative ‘top-down’
model of reasoning makes the unambiguous prediction that such players rank 𝐼𝑅 above𝐷𝑆.
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A Experimental Results of All Participants
In this section, we replicate and report all results reported in the main text. Table A.1 presents the
distribution of actions in the two diagnostic games.

Table A.1: Frequency of Action Choices in the Diagnostic Games

Action 𝐼𝑅 𝐷𝑆
𝑎 298/470 36/470
𝑏 63/470 82/470
𝑐 59/470 352/470
𝑑 50/470 —

All choices made irrespective of opponent type.

We begin by summarizing choice behavior and the preference relation over 𝐼𝑅 and 𝐷𝑆 irre-
spective of the opponent type. Table A.2 lists these results.

Table A.2: Aggregate Results

𝐼𝑅 ≻ 𝐷𝑆 𝐼𝑅 ≾ 𝐷𝑆
𝐼𝑅𝑀 Prediction all nil

Ratio 212/470 258/470
Percentage 45.1% 54.9%

All choices made irrespective of opponent type.
𝐼𝑅𝑀 ≡ Iterative ‘top-down’ model of reasoning.

As a next step, we control for participants whose behavior is inconsistent with best-responding
across all games and either type. For example, we now remove participants who play 𝑎 with a
valuation 𝑣 ≥ 12, and further exclude those whose valuations exceed the maximum possible payoff
given their action choice; e.g., playing 𝑏with a valuation 𝑣 > 13.25 or 𝑐with a valuation 𝑣 > 12.25 in
either of the two control games,𝑀𝑆 and𝑁𝐸. As a result, we are now focussing on 173 participants
playing against an undergraduate student of any year or discipline and 164 participants playing
against a Ph.D. students in Economics, respectively. Table A.3 lists these results of 𝑛 = 337 choices
irrespective of opponent type.
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Table A.3: Aggregate Results – Controlling for Best-Response Inconsistency

𝐼𝑅 ≻ 𝐷𝑆 𝐼𝑅 ≾ 𝐷𝑆
𝐼𝑅𝑀 Prediction all nil

Ratio 158/337 179/337
Percentage 46.9% 53.1%

All choices made irrespective of opponent type excluding
all choices that are inconsistent with best-responses in𝑀𝑆 and𝑁𝐸.

𝐼𝑅𝑀 ≡ Iterative ‘top-down’ model of reasoning.

Next, we control for participants whose behavior is consistent with a preference for Nash equi-
librium in pure strategies and either type. That is, we now remove participants who play 𝑐 in both
𝐷𝑆 and 𝑁𝐸 as well as value this control game weakly above 𝐷𝑆. This let’s us focus on 162 par-
ticipants playing against an undergraduate student of any year or discipline and 128 participants
playing against a Ph.D. students in Economics, respectively. Table A.4 lists these results of 𝑛 = 337
choices irrespective of opponent type.

Table A.4: Aggregate Results – Controlling for Nash Equilibrium Preference

𝐼𝑅 ≻ 𝐷𝑆 𝐼𝑅 ≾ 𝐷𝑆
𝐼𝑅𝑀 Prediction all nil

Ratio 132/290 158/290
Percentage 45.5% 54.5%

All choices made irrespective of opponent type excluding
all choices that play 𝑐 in𝐷𝑆 and𝑁𝐸 and value𝑁𝐸 weakly above𝐷𝑆.

𝐼𝑅𝑀 ≡ Iterative ‘top-down’ model of reasoning.

Last, we leverage𝑀𝑆 and 𝑁𝐸 and, in this step, exclude only those choices that value all small
games equally; that is, 𝑣𝐷𝑆 = 𝑣𝑀𝑆 = 𝑣𝑁𝐸. This results in concentrating on 173 participants playing
against an undergraduate student and 165 participants playing against a Ph.D. students in Eco-
nomics, respectively. Table A.5 lists these results.

Table A.5: Aggregate Results – Controlling for Equal Valuations of All Smaller Games

𝐼𝑅 ≻ 𝐷𝑆 𝐼𝑅 ≾ 𝐷𝑆
𝐼𝑅𝑀 Prediction all nil

Ratio 109/338 229/338
Percentage 32.2% 68.2%

All choices made irrespective of opponent type excluding
all choices that value𝐷𝑆,𝑀𝑆, and𝑁𝐸 equally.
𝐼𝑅𝑀 ≡ Iterative ‘top-down’ model of reasoning.

Overall, the inclusion of the controls does not alter the results. Similar to the results reported in
themain text, while the ratio of those who weakly prefer𝐷𝑆 over 𝐼𝑅 increases to some extent, using
the entire sample also suggests that participants may value the predictability of their opponents’
actions.

As in the main text, we move beyond summary statistics and turn to the empirical distribution
of valuations by the ranking of 𝐼𝑅 and 𝐷𝑆 induced by the valuations for the aggregate results pre-
sented in Table A.2. We leverage again the cardinal information obtained in the second part of the
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FigureA.1: Empirical ValueDistributions ofAll Games by theRanking of 𝐼𝑅 and𝐷𝑆 for all𝑁 = 470
Choices. Top Row: The diagnostic games. Left: 𝐼𝑅; Right: 𝐷𝑆; Bottom Row: The control games.
Left: 𝑀𝑆; Right: 𝑁𝐸.

experiment – the valuation task. Figure A.1 visualizes the empirical distributions of the valuations
of the two diagnostic games, 𝐼𝑅 and𝐷𝑆, as well as the two control games,𝑀𝑆 and𝑁𝐸.

Next, we show the empirical value distributions for all games by the ranking of 𝐼𝑅 and 𝐷𝑆 in
Figure A.2.

Turning to choices at the subject-level and a brief discussion of differences in behavior by op-
ponent type. We have established that approximately half of the choices made by these participants
are consistent with difficulty of predicting others’ behavior. On the full sample, this turns out to
be even stronger when we control for valuing all smaller games equally as highlighted above. Table
A.6 shows the comparative statics of the ranking over the set of diagnostic games conditional on
the opponent’s identity (i.e., either an undergraduate student or a Ph.D. student in Economics).
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Figure A.2: Empirical Value Distributions of 𝐼𝑅,𝐷𝑆,𝑀𝑆, and𝑁𝐸 by Ranking of 𝐼𝑅 and𝐷𝑆

Table A.6: Ranking of 𝐼𝑅 and𝐷𝑆 by Opponent Type

Undergraduate
𝐼𝑅 ≻ 𝐷𝑆 𝐼𝑅 ≾ 𝐷𝑆

Ph
.D
.

𝐼𝑅 ≻ 𝐷𝑆 𝐼𝑅𝑀 Prediction 𝑎𝑙𝑙 𝑛𝑖𝑙
Ratio 67/235 49/235

Percentage 28.5% 20.9%

𝐼𝑅 ≾ 𝐷𝑆 𝐼𝑅𝑀 Prediction 𝑛𝑖𝑙 𝑛𝑖𝑙
Ratio 29/235 90/235

Percentage 12.3% 38.3%
𝐼𝑅𝑀 ≡ Iterative ‘top-down’ model of reasoning.

Lastly, we ran ordinary least-square regressions with random effects controlling for order effects
as well as the opponent order. In particular, we regressed the difference in valuations of 𝐼𝑅 and𝐷𝑆
(𝑣𝐼𝑅 −𝑣𝐷𝑆) on the opponent dummy PhD, which is 0 for facing an undergraduate student and 1 for
playing against a Ph.D. student in Economics, and the valuations for both𝑀𝑆 and 𝑁𝐸. Further,
we include the game order dummy DS before IR, which is 0 if 𝐼𝑅 is displayed before 𝐷𝑆 and 1 if
𝐷𝑆 is displayed before 𝐼𝑅. In addition, we also include the opponent order dummy PhD before
UG, which is 0 if participants played first against an undergraduate student and afterwards against
a Ph.D. student in Economics in the first part of the experiment and 1 if the order is reversed.

We first split our sample by preference relation over the set of diagnostic games and opponent
type (= 2 × 2) as in Table A.6 and then estimate the model using the full sample. Unlike in the
main text, we do not exclude participants from our analysis whose valuations exceed themaximum
possible payoff given their action and those who are inconsistent with best-responding in𝐷𝑆. Table
A.7 lists the results from this analysis.

We find a strong effect of the observed characteristic of the opponent, Ph.D., on the difference
in valuations of 𝐼𝑅 and 𝐷𝑆 for all ranking as long as 𝐷𝑆 ≿ 𝐼𝑅 against at one opponent type only.
This is also mildly true for the full sample, irrespective of the ranking over the set of diagnostic
games. As expected, we do not find a strong of type when 𝐷𝑆 ≺ 𝐼𝑅. Here, we also do not find a
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Table A.7: OLS Estimations with Random Effects of Difference in Valuations of 𝐼𝑅 and𝐷𝑆

Ranking by UG: 𝐼𝑅 ≻ 𝐷𝑆 UG: 𝐼𝑅 ≾ 𝐷𝑆 UG: 𝐼𝑅 ≻ 𝐷𝑆 UG: 𝐼𝑅 ≾ 𝐷𝑆 All
Opponent PhD: 𝐼𝑅 ≻ 𝐷𝑆 PhD: 𝐼𝑅 ≻ 𝐷𝑆 PhD: 𝐼𝑅 ≾ 𝐷𝑆 PhD: 𝐼𝑅 ≾ 𝐷𝑆

𝑣𝐼𝑅 − 𝑣𝐷𝑆 𝑣𝐼𝑅 − 𝑣𝐷𝑆 𝑣𝐼𝑅 − 𝑣𝐷𝑆 𝑣𝐼𝑅 − 𝑣𝐷𝑆 𝑣𝐼𝑅 − 𝑣𝐷𝑆
Intercept 2.474∗∗∗ −1.075 2.498∗ −1.597∗∗ 0.069

(0.831) (1.101) (1.379) (0.685) (0.682)
PhD −0.190 3.642∗∗∗ −3.418∗∗∗ 0.206 0.360∗

(0.186) (0.290) (0.350) (0.148) (0.170)
𝑣𝑀𝑆 −0.116 −0.043 0.007 0.037 −0.039

(0.076) (0.090) (0.111) (0.054) (0.055)
𝑣𝑁𝐸 0.070 0.019 -0.007 0.030 0.067

(0.078) (0.094) (0.115) (0.057) (0.058)
𝐷𝑆 before 𝐼𝑅 0.009

(0.215)
𝑃ℎ𝐷 before 𝑈𝐺 -0.225

(0.219)
𝜎𝜖 1.059 1.435 1.286 0.995 1.839
𝜎𝑢 0.897 0.750 0.812 0.961 1.002
N 134 98 58 180 470
(Between) R-squared 0.009 0.019 0.009 0.013 0.010
∗∗∗Significant at the 1 percent level; ∗∗Significant at the 5 percent level; ∗Significant at the 10 percent level

strong of type when 𝐷𝑆 ≿ 𝐼𝑅. Overall, these estimation results for all𝑁 = 235 are in line with the
difference in differences of valuations by opponent type and by ranking of 𝐼𝑅 and𝐷𝑆 too. Using the
full sample, we also do not find any indication of order effects, either due to presenting participants
𝐼𝑅 or 𝐷𝑆 before the other as well as playing each of the four games first against an undergraduate
student or a Ph.D. student in Economics in the first part of the experiment.

5


	Introduction
	The Design
	Building Intuition: Model and Solution Concept
	The Games

	The Experiment
	Implementation
	Participants and Procedure
	Discussion of the Implementation and Procedure

	Results
	Elicited Valuations
	Aggregate Choices
	Empirical Value Distributions
	Opponent Type
	Non-Choice Data

	Theoretical Analysis
	Theory
	Revisiting the Diagnostic Games

	Concluding Remarks
	Experimental Results of All Participants

