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Abstract

We study exploration under uncertainty and show how access to data on past attempts can paradox-
ically hinder breakthrough discovery. We develop a model of the “streetlight effect” demonstrating
that when data highlights attractive but ultimately suboptimal projects, it can narrow exploration
and suppress innovation. In a laboratory experiment, we find that revealing the value of an entic-
ing project lowers payoffs and reduces breakthrough discoveries. This drop stems from increased
free-riding behavior, which crowds out the generation of new data. We validate our theory in the
context of scientific research into the genetic origins of human diseases. To identify the causal
impact of past data, we use an instrumental variable that leverages exogenous genetic overlaps
between humans and laboratory mice, which reduces research costs for specific genes and leads
to prioritized data collection about them. We find that diseases with early evidence of promising
genetic targets are 16 percentage points less likely to yield breakthroughs than those where early
efforts failed. While competition attenuates the streetlight effect, it does not eliminate it. Our paper
provides the first systematic analysis of this phenomenon, outlining the conditions under which
data leads agents to look under the lamppost rather than engage in socially beneficial exploration.
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1 Introduction

A central challenge in medical research is identifying the genetic drivers of human disease from

over 19,000 potential gene candidates. Puzzlingly, more than two decades after the Human Genome

Project mapped all human genes, the genetic landscape remains relatively underexplored (Edwards

et al., 2011). Fewer than 10% of genes have been targeted by approved drugs, despite recognition that

many less-studied genes may offer better therapeutic opportunities (Stoeger et al., 2018; Gates et al.,

2021). Similar patterns appear in other domains, such as venture capital and industrial R&D, where

agents should have strong incentives to search broadly, and yet, collective exploration appears limited

and potentially valuable options remain neglected. While this underexploration has been noted in

policy discussions, it remains under-theorized in formal economic terms. Understanding its drivers

is critical in an era of apparent diminishing returns to research effort (Gordon, 2016; Bloom et al.,

2020). Whether these trends reflect intrinsic limits to innovation or a narrowly focused search shaped

by innovators’ incentive structures remains an open question.

To shed light on this issue, we start by observing that innovative search rarely begins on a blank

slate. For instance, a scientist studying a disease typically draws on data from past experiments before

selecting a genetic target. We develop a framework to understand how such data shapes the direction

of future exploration. Our thinking is motivated by the parable of the streetlight effect, where agents

disproportionately focus their search in areas with readily available data rather than allocating effort

based on scientific theory, market potential, or policy relevance. In our simple model, we show

how information on past discoveries can narrow search and, paradoxically, reduce both individual

and social returns. This runs counter to the conventional view that accurate data always improves

outcomes by reducing uncertainty and making exploration more efficient. Our paper reconciles these

perspectives by studying how the streetlight effect can emerge in exploratory search among rational

agents and identifying the conditions under which greater data availability may hinder rather than help

innovation.

In our strategic multi-armed bandit model, agents choose among risky projects over two periods.

Projects can be of low, medium, or high value, but their quality is revealed only through exploration.

In each period, the decision-maker uses existing information to choose between investing in a previously

explored project or taking a risk by exploring a new one. Exploration costs are borne privately, but

the resulting data become publicly available. Within this setup, we examine how providing data on

the value of one opportunity influences exploration choices. Our central result is that the impact of
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data hinges on the type of project illuminated: information about a medium-value project can reduce

both individual and group payoffs relative to having data on a low-value project or even no data at all.

The intuition behind our result is that when the medium-value project exceeds the expected return

from exploring riskier alternatives, it becomes individually rational for agents to pursue the option

highlighted by the data. Since this logic applies to all agents, it induces herding behavior: data reduces

uncertainty but also narrows the direction of follow-on investment, collectively suppressing exploration

that would result in new data generation. As a result, even rational agents may underexplore due to

free riding on the informational externalities of others. Our baseline model, where followers receive

the same payoff as initial innovators, reflects settings like science and technology, where knowledge is

often non-excludable (Aghion et al., 2008; Hill and Stein, 2025b; Krieger, 2021). When we introduce

competition by reducing the rewards for follow-on innovators, the effect persists under moderate

rivalry but weakens significantly as competition intensifies. Thus, while competitive pressures can

undermine innovation quality through racing dynamics (Hill and Stein, 2025a), their absence may

discourage exploration altogether due to the streetlight effect.

Next, we implement an online laboratory experiment to test whether our theoretical predictions

hold with human participants. Groups of players take part in a two-period game involving strategic

exploration. In the baseline condition, players sequentially select from five unknown options randomly

drawn from a known payoff distribution. In the first period, they choose one project without immediate

feedback; in the second, they observe all first-round payoffs before selecting again. Payoffs are non-

rival and cumulative. We then run the same game but provide players with information on one

project—either low, medium, or high in value. The results align with our theory: revealing data on

the medium-value project reduces group payoffs by 5% and the likelihood of finding the best outcome

by 56%, relative to the no-data baseline. Information on low-value projects has no significant effects,

while data on high-value projects improve outcomes. We also vary the degree of payoff rivalry and

find that the streetlight effect persists under moderate rivalry but diminishes in magnitude.

While our theoretical and laboratory results are intriguing, it is unclear how extensively the streetlight

effect shapes real-world innovation. Therefore, we return to our opening example of scientists looking

for disease-related genes to employ as drug targets. Searching for the genetic roots of human diseases

closely mirrors our theoretical setup: researchers face over 19,000 protein-coding genes, and pin-

pointing the right targets involves individually risky exploration that can yield large payoffs for drug

development. It is also a collective endeavor, with scientists learning from one another and drawing on
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data from published findings. For instance, consider Tangier disease, a rare condition characterized by

extremely low levels of HDL cholesterol in the blood. Decades of research had focused on genes that

early data suggested as moderately promising, but unlikely to lead to therapeutic breakthroughs—until

a scientist definitely linked the disease to mutations in the ABCA1 gene. We leverage these parallels to

examine whether dynamics akin to the streetlight effect might steer scientists away from breakthrough

discoveries.

We leverage data from DisGeNET, a bibliographic database that links scientific publications to the

specific diseases and genes they investigate. Each gene-disease combination is assigned a normalized

score reflecting the strength of the supporting scientific evidence, which we use to classify associations

as low, medium, or high in scientific value. Our dataset covers genetic discoveries for 3,864 diseases

between 1980 and 2019. We use this data to examine how the scientific promise of early discoveries—

specifically those made before 2000—shapes subsequent innovation at the disease level. The main

analysis cross-sectionally explores the implications of our model using careful controls for disease

type and total research effort received. Since the distribution of past data is unlikely to be random,

we also employ a complementary identification strategy. We use an instrumental variables approach

that exploits variation in genetic similarity between human and mouse genes. Research on a human

gene is less costly when scientists can study the same gene in laboratory mice, so genes shared across

species tend to be explored earlier (Stoeger et al., 2018). However, diseases differ in the likelihood

that such shared genes are of high scientific value. This variation creates quasi-random differences in

early data, which we use to instrument for the promise of initial discovery and estimate causal effects.

Our results show that disease areas with promising but suboptimal genes discovered prior to 2000

are 16 percentage points less likely to report a major breakthrough afterward, compared to diseases

where all earlier data unveiled low promise targets. In practical terms, discovering a medium-value

genetic target delays a breakthrough by an average of 2.8 years, roughly 14% longer than the sample

mean of 20.2 years. These findings are confirmed by our instrumental variable framework. Event

study estimates show a sharp decline in the number of new genes explored following a medium-value

discovery, with no evidence of pre-trends. Consistent with our theory, the mechanism seems to be

that early medium-value discoveries reduce the diversity of follow-on research, narrowing exploration

and lowering the likelihood of identifying high-impact gene-disease associations. Also in line with

our model, we find that the streetlight effect is muted in disease areas with greater competition. Taken

together, the empirical evidence from the context of genetic research offers striking support for our

theoretical predictions.
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Our three-part study contributes to several strands of research. First, we add to a growing literature on

how data is generated and how it shapes economic outcomes (Bergemann and Bonatti, 2019; Bessen

et al., 2022; Farboodi and Veldkamp, 2020; Jones and Tonetti, 2020). Rather than treating data as a

homogeneous commodity, we show that the nature of the data itself (specifically what it illuminates

or omits) shapes agents’ exploration choices. While our findings intersect with work on data as a

public good (e.g., Nagaraj and Tranchero, 2024), they also speak more broadly to information that

provides signals on the value of uncertain projects. Notably, our results emerge in a context where

we operationalized data as instrumental information, i.e., unbiased and directly payoff-relevant. Our

results could be even starker if data were imprecise, biased, or uninformative (Henrich et al., 2010;

Cao et al., 2024) or if agents’ attention is drawn to salient payoffs (Bordalo et al., 2012, 2013, 2020).

Beyond this, we propose a novel mechanism by which data can hinder exploration: by leading agents

to implicitly coordinate on certain but dominated projects, thus crowding out new data generation to

the detriment of collective outcomes.

Second, we contribute to the literature on strategic experimentation and social learning (Bolton and

Harris, 1999; Keller et al., 2005; Klein and Rady, 2011; Hörner et al., 2022). We build on recent

experimental work examining behavior under strategic interdependence and informational externalities

(Boyce et al., 2016; Hoelzemann and Klein, 2021, 2025). Relative to the commonly studied single-

agent bandit problem (Bergemann and Valimaki, 2008), we show how informational spillovers in

collective experimentation can create free-rider problems that endogenously limit aggregate data

generation and dynamically lower payoffs.1 We further demonstrate that this mechanism aligns with

empirical patterns in scientific research on disease-causing genes (Gates et al., 2021; Edwards et al.,

2011; Haynes et al., 2018), illustrating how our framework helps explain real-world search dynamics.

Finally, we contribute to the innovation search literature that examines what drives risky exploration

among innovators (Arora et al., 2025; March, 1991; Levinthal, 1997; Manso, 2011; Azoulay et al., 2011;

Ederer and Manso, 2013; Henry et al., 2022). We highlight the role of the information environment in

driving underexploration. We also build on research exploring how different types of data influence

experimentation under technological uncertainty (Ewens et al., 2018; Krieger, 2021). In particular,

we show how data might have counterintuitive effects in search, offering a less sanguine outlook for

how innovation will be shaped in the age of big data and AI (Agrawal et al., 2024; Cockburn et al.,
1A related literature in computer science examines rule-based bandit learning, where a single decision-maker follows fixed
decision rules (Vermorel and Mohri, 2005). In contrast, the welfare losses we document arise from incentive misalignment
between individually and socially optimal behavior, rather than from bounded rationality.
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2019; Kim, 2023; Toner-Rodgers, 2024). Our evidence on disease-relevant genetic discovery adds to

prior work examining how databases shape scientific productivity in the biomedical field (Kao, 2024;

Williams, 2013; Tranchero, 2025).

The remainder of the paper proceeds as follows. Section 2 provides an overview of the theoretical

framework. Section 3 describes the laboratory experiment. Sections 4 and 5 present the empirical

analysis in the context of genetic research. Section 6 concludes.

2 Theoretical Framework

Setup. There are N agents engaged in a search to maximize their individual payoffs, choosing from

A projects of initially unknown value, with N ≥ A. Project payoffs are independent and fall into

one of three categories: with probability pL, a project yields a low payoff (L); with probability pM ,

a medium payoff (M ); and with probability pH , a high payoff (H), where 0 ≤ L < M < H and

pL + pM + pH = 1. While agents know this distribution in advance, they have no prior information

about the specific payoff of any given project. Each agent lives for two periods, is risk-neutral, and

discounts future payoffs at zero. Agents cannot communicate directly. This setup reflects real-world

environments in which individuals face a set of unknown opportunities, where valuable projects are

rare but highly rewarding (Kerr et al., 2014; Manso, 2016).

Dynamics. In each period, the N agents choose projects sequentially in a random order. While they

can observe the choices made by earlier movers, they do not yet see the payoffs associated with those

choices. Once all agents have selected a project, the payoffs of the chosen projects are revealed to

everyone, marking the end of period 1. In period 2, the process repeats with the same order. This time,

agents know the payoffs of previously explored projects and can choose either a known project or an

unexplored one, whose payoff will again be revealed at the end of the period. Payoffs are cumulative

across the two periods, so agents earn the sum of the values of the projects they choose. Importantly,

payoffs are non-rival, so if multiple agents select the same project, each receives its full value. Unlike

classic payoff externalities in public goods problems, here an agent is affected by others only through

the data their choices produce over time (Hoelzemann and Klein, 2021, 2025). This setup mimics

competitive markets where organizations conduct parallel R&D. Although projects do not directly

compete, the information they generate is valuable to all participants (Krieger, 2021).

Equilibrium without Data. We begin by considering the equilibrium in a setting where no data

about project payoffs is available before the game begins. At the start of period 1, all projects offer
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the same expected payoff based on the known probability distribution. The sequential structure of

the game leads agents to choose different projects to generate more data that can guide decisions in

period 2. Since N ≥ A, agents can implicitly coordinate to explore all projects, so the highest payoff

is identified before the second period begins. This means that each agent earns the expected value of a

random draw in period 1, followed by the highest available payoff in period 2. The probability that the

best discovered project has payoff L is pAL , payoff M is (1−pH)
A−pAL , and payoff H is 1− (1−pH)

A.

The collective expected payoff and the likelihood of discovering a high-value project are as follows:

[Group Payoff] N [(pL + pAL)L+ (pM + (1− pH)
A − pAL)M + (pH + 1− (1− pH)

A)H] (1)

[Group Breakthrough] 1− (1− pH)
A (2)

Equilibrium with Data on L or H Projects. We now compare the setup above to a scenario where

the payoff of one project is publicly revealed at the start of the game. The effect of this data depends

on the value of the disclosed project. If the revealed project has a payoff of H , all agents immediately

coordinate on it, each earning 2H , and the group achieves the maximum total payoff of 2H ·N . The

probability of a breakthrough is 1, showing how data can lead directly to the best possible outcome

by eliminating uncertainty. If, instead, the revealed project has a payoff of L, agents simply avoid that

option, and they are back to the original setup with one fewer low-value project. In this case, the group’s

expected payoff is N [(pL+p
(A−1)
L )L+(pM +(1−pH)

(A−1)−p
(A−1)
L )M+(pH+1−(1−pH)

(A−1))H],

and the probability of a breakthrough is 1− (1− pH)
(A−1). These outcomes are similar to the no-data

case and converge to it as A → ∞. In other words, when a low-payoff project is revealed and the

search space is large enough, there is still dispersed exploration.

Equilibrium with Data on M project. What is arguably more interesting, and so far understudied,

is the intermediate case where a medium-value project is revealed. Here, a non-empty parameter

space exists in which data can be detrimental due to the streetlight effect. This arises when the payoff

from choosing M is attractive enough relative to exploring other, unknown-value projects. If the loss

from exploration, given by M − (pLL+ pMM + pHH), exceeds the potential gain from exploration,

pH(H −M), then all agents choose the medium project in equilibrium.2 This leads to the following

condition:
2Suppose there was an equilibrium where some agents selected other projects. By backward induction, the last such agent
would strictly prefer the medium project under this condition.
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Assumption 1 (“Medium Project is Good Enough”).

M >
pLL+ pH2H

2− pL − 2pM
(3)

Assumption 1 ensures that selecting the medium project dominates searching for a high-value one.

Rational agents choose it in both periods, yielding an expected group payoff of 2M · N . However,

when M is not too large relative to L and H , we can show—perhaps counterintuitively—that payoffs

with data are actually lower than those with no data. More formally, we introduce:

Proposition 1 (“Group Payoff with Data on Medium Project”). Under Assumption 1 and if

M <
(pL + pAL)L+ (pH + 1− (1− pH)

A)H

2− (1− pH)A + pAL − pM
(4)

the group payoff without data is higher than when a medium project is revealed.

Proof. We need to show that the expected group payoff without data exceeds the expected group payoff
whenever an M project is revealed upfront. This is true if N [(pL+pAL)L+(pM +(1−pH)

A−pAL)M+
(pH + 1− (1− pH)

A)H] > 2M ·N , which is equivalent to the condition in the proposition. ■

The fact that the medium option offers high individual payoffs does not guarantee it is socially optimal.

On the contrary, it can lure agents into avoiding exploration. The known option is tempting when the

individual odds of finding the high-value project are low, but at the cost of hurting collective welfare.

What rational agents fail to account for are the data externalities created by their own experimentation,

even when unsuccessful. This leads to the following two results:

Proposition 2 (“Exploration with Data on Medium Project”). If µ|i is defined as the unmapped share
of projects chosen in period 1 given data i, then under Assumption 1, the following weak inequalities
hold: µ|H ≤ µ|M ≤ µ|L ≤ µ|∅

Proof. The proof directly derives from our preceding discussion. If H is revealed, agents will choose
that project, so µ = 0. If M is appealing enough, agents forfeit exploration and only choose the
revealed project, so µ = 0. If no data is provided or L is revealed, then agents explore all remaining
unknown options in period 1, so µ = 1. ■

Proposition 3 (“Breakthrough with Data on Medium Project”). If P (H|i) is defined as the conditional
probability of discovering H given data i, then under Assumption 1, the following strict inequality
holds: P (H|M) < P (H|i) where i ∈ {∅, L,H}

Proof. If M is appealing enough, agents never achieve a breakthrough, i.e., never discover H , so
P (H|M) = 0. If no data is provided or L is revealed ex ante, then agents explore all remaining
unknown options in period 1, and the probability that H is discovered at all is (1 − (1 − pH)

A) and

8



(1− (1− pH)
(A−1)) respectively, which are both strictly greater than 0. The statement is trivially true

whenever H is revealed. ■

The streetlight effect arises when the medium payoff is tempting enough for the individual, yet

exploration still holds social value—that is, when Assumption 1 and Equation (4) both hold. This

requires a skewed payoff distribution. If the distribution of payoffs was symmetric, the expected

value of an unknown draw would equal M , making exploration risk-free with a potential upside of

pH(H − M). In that case, Assumption 1 would be violated, and the streetlight equilibrium would

not emerge. However, the effect also vanishes under extreme payoff skewness. If the breakthrough is

too rare (very small pH), the expected social value of exploration falls below M , violating Equation

(4). If the breakthrough is too common (very large pH), the private upside pH(H − M) becomes

very attractive, breaking Assumption 1. Thus, the streetlight equilibrium appears only under moderate

skewness of the payoff distribution.3

The Role of Competition. Our theoretical framework assumes non-rivalry in payoffs, meaning

that agents still earn the full reward even if they were not the first to choose a project. While a

simplification, this assumption fits reasonably well in fields like scientific research. For instance, Hill

and Stein (2025b) find that follow-on projects receive about 79% as many citations as similar projects

that were first to the finding. Scientific innovation is often non-rivalrous because early discoveries

generate new opportunities for others in the same domain. Still, in many other settings, one agent’s

choice can largely diminish the value of that option for others. To capture this, we now introduce

rivalry into the model. Specifically, we assume that a project’s payoff falls to zero when the number

N of agents already selecting that project is greater than N̄ . This adjustment makes individual payoffs

sensitive to competition, with smaller N̄ reflecting stronger payoff rivalry. The rest of the model

remains unchanged. The results below show how this affects exploration and discovery:

Proposition 4 (“Exploration under Rivalry”). If payoff rivalry is not extreme (i.e., N̄ > N −A+ 1),
then the original weak inequalities still hold under Assumption 1: µ|H ≤ µ|M ≤ µ|L ≤ µ|∅.
Moreover, exploration is increasing in rivalry.

Proof. Without any data, agents still explore all projects in the first period, so µ|∅ = 1. If L is revealed
ex ante, then agents will explore all the unknown projects in the first period so that µ|L = 1. If H
is revealed ex ante, then N̄ agents will select the mapped project. The remaining N − N̄ agents will
randomly select as many as the remaining A−1 projects as possible. Therefore, since N−N̄ < A−1,
3For example, the following parameters satisfy Assumption 1 and Equation (4), and thus lead to the outcome where
revealing information about a medium project reduces social welfare and lowers the probability of a breakthrough:
L = 0,M = 6, H = 15, pL = 7/10, pM = 1/10, pH = 2/10, A = 5, N = 5.

9



µ|H = N−N̄
A−1

. Similarly, if M is revealed ex ante, and Assumption 1 holds, then N̄ agents will select
the mapped project. The remaining N − N̄ agents will randomly select as many as the remaining
A − 1 projects as possible. Since N − N̄ < A − 1, then µ|M = N−N̄

A−1
. Now, suppose we increase

rivalry to N̄ − 1. Since N − N̄ < A− 1, when a medium project is revealed, an additional unknown
project is explored, and µ|M increases. In the extreme case, when N̄ = 1, the revelation of an M
project has no impact on exploration as agents will explore all remaining unknown options in the first
period. Note this result can be analogously stated in terms of N (instead of N̄ ). Holding N̄ constant,
if we increase the number of agents to N + 1, then if N − N̄ < A− 1, an additional unknown project
is explored, and µ|M increases. ■

Proposition 5 (“Breakthroughs under Rivalry”). If payoff rivalry is not extreme (i.e., N̄ > N−A+1),
then the original strict inequality still holds under Assumption 1: P (H|M) < P (H|i) where i ∈
{∅, L,H}. Moreover, breakthrough discoveries are increasing in rivalry.

Proof. The proof follows directly from the analysis above. If no data is provided, then the probability
that H is discovered is still (1 − (1 − pH)

A). If L is revealed ex ante, then the probability that H
is discovered is still (1 − (1 − pH)

(A−1)). If H is revealed ex ante, then P (H|H) is still trivially
1. If M is revealed ex ante, the probability that H is discovered is (1 − (1 − pH)

N−N̄) and, since
A − 1 > N − N̄ , P (H|M) < P (H|L) < P (H|∅) < P (H|H). Now, suppose we increase rivalry
to N̄ − 1. Since N − N̄ < A − 1, then an additional unknown project is explored, and P (H|M)
increases. Similar to before, this result can also be stated in terms of N . Suppose we increase the
number of agents to N + 1. Since N − N̄ < A− 1, then an additional unknown project is explored,
and P (H|M) increases. ■

Our key finding is that the streetlight effect persists under modest levels of rivalry but weakens as

rivalry increases. Competition pushes agents to explore more, increasing the likelihood of discovering

a high-value project. This highlights payoff rivalry as a boundary condition for the streetlight effect.

3 Laboratory Experiment: Design and Results

While our simple theoretical framework helps explain the emergence of the streetlight effect, it remains

an open question whether it accurately reflects how agents behave in practice. To explore this, we

conducted an online experiment mirroring the structure of our model.

3.1 Experimental Procedure and Logistics

Participants logged into the experimental platform remotely and were assigned to either the data or no-

data condition in groups of ten. Upon joining, they received detailed written instructions and watched

a compulsory seven-minute video that reiterated the rules and introduced the platform.4 Participants
4The videos shown to participants are available upon request.
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were then required to complete a short quiz as an attention and comprehension test. They also had

continuous access to the instructions and could contact an experimenter via cell phone or Zoom for

support. The experiment consisted of independent “rounds,” each following the structure of our

theoretical framework. Each round had two periods over which payoffs were calculated. Participants

were randomly assigned to groups of five, with groups reshuffled every five rounds. In total, each

participant played 20 rounds. At the end of the experiment, we collected demographic information

and measured risk preferences using a monetarily incentivized, upscaled version of the Holt and Laury

task (Holt and Laury, 2002). Final payments included earnings from one randomly selected round, a

show-up fee, and the outcome of the risk elicitation task.

The experiment was programmed using the open-source platform oTree (Chen et al., 2016) and

conducted at the Vienna Center for Experimental Economics (VCEE). Participants were recruited

from VCEE’s subject pool via ORSEE (Greiner, 2015), targeting undergraduate and master’s students

who had previously participated in no more than five experiments. Participation was voluntary, and

individuals could withdraw at any time. We ran 18 sessions with a total of 180 participants, ensuring

that no one took part in more than one session. Participants ranged in age from 18 to 52, with an

average age of 24.7 years and a standard deviation of 4.7. All sessions were conducted in December

2024. The experimental task lasted approximately 50 minutes, with additional 10 minutes allocated

for reading instructions, watching the explanatory video, and completing the attention quiz. Average

participant earnings were =C15.4, with a standard deviation of =C4.6.

3.2 Task Description and Implementation

Participants took on the role of individuals searching for precious gems (Panel A of Figure 1). In each

round, they faced five mountains, each hiding one type of gem that could only be revealed through

exploration. There were three types of gems, differing in rarity and value: topazes (L), rubies (M ),

and diamonds (H). While the exact monetary values varied across rounds, diamonds were always

more valuable than rubies, and rubies were always more valuable than topazes. Participants were

informed that topazes appeared with a 60% probability, rubies with 20%, and diamonds with 20%,

though they were not told which gem was hidden behind which mountain. The goal of the game was

to find the most valuable gems, as their value directly determined participants’ earnings.

In addition to displaying the values and distributions of the gems, the interface tracks the current period

and the round number as participants progress through the experiment.5 Each group of five players
5The interface also shows the “block” number, which indicates when participant groups are reshuffled. A new block begins
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remains anonymous, and participants cannot interact or communicate directly with one another.6

Within each round, players take turns selecting a mountain to explore in a randomly determined order

that changes every round. A dynamic indicator on the screen highlights when it is their turn to choose.

At the start of each round, no player has private information about the locations of the gems, which are

randomly reassigned each round (but remain fixed between the two periods of a given round). While

waiting for their turn, players can observe which mountains have already been selected. When it is

their turn, they are free to choose the same mountain as someone else or a different one.

In the no-data condition, participants begin by selecting one of five mountains to explore in period 1.

Once all players have made their choices, the gems hidden in the selected mountains are revealed to

everyone, and each player earns the value of the gem from their chosen mountain. In period 2, players

again choose from the same mountains, in the same random order, with gem locations unchanged.

Now, however, they can see the gems uncovered in period 1 and can either stick with their previous

choice or switch to a different mountain. The newly selected mountains are revealed, and their gem

values are added to each player’s payoff. The data condition follows the same structure, with one

key difference: at the start of each round, one mountain is “mapped,” and its gem is revealed to all

participants. This is the only information available at the outset. Panel B of Figure 1 illustrates this

setup. Figure (i) shows the no-data condition, where all mountains are hidden, while Figures (ii),

(iii), and (iv) depict the three possible data scenarios, where the revealed mountain contains a low-,

medium-, or high-value gem. The revealed mountain is selected by a script using a random sequence.

We collected data from a total of 720 rounds. In 120 of these, participants received data revealing

a low-value gem; in 240 rounds, they saw data on a medium-value gem; and in another 120 rounds,

the revealed gem was high-value. In the remaining 240 rounds, no initial data about gem locations

was provided. We determined the proportion of rounds assigned to each treatment condition based on

power calculations. Across the experiment, we used five different combinations of payoff parameters.

Specifically, the values for low, medium, and high-value gems were set to one of the following:

(L,M,H) = {(1, 6, 11), (1, 6, 11.5), (2, 6, 11), (2, 6, 11.5), (3, 7, 12)}.

every five rounds, after which players remain in the same group for the next five rounds.
6Although participants are aware that their co-players change every five rounds, they are never able to identify who they
are playing with. When a player selects a mountain, the others see a message such as “one player selected this mountain,”
but never learn who made the choice. See Figure 1 for an illustration.
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3.3 Results

Group Payoffs. We begin by examining group-level earnings. For each round, we calculate the

maximum possible group payoff and express realized group earnings as a percentage of this value.

This allows us to compare outcomes across rounds, despite variation in the values and distributions

of the low-, medium-, and high-value gems. Panel (i) of Figure 2 plots the average group payoff by

condition, comparing the three data treatments to the no-data baseline. Strikingly, revealing data on a

medium-value project leads to lower group payoffs than all other conditions, including the case where

no data is provided. To quantify these differences, we estimate the following OLS specification:
Group Payoffj,k = α+ βInitial Datak + γXk + ϵj,k, (5)

where Group Payoffj,k denotes the payoff for group j in round k, Initial Datak is a categorical

variable indicating the type of project revealed at the start of the round, and Xk is a vector of fixed

effects that accounts for the session, the specific payoff structure, and the round’s position in the

session. Standard errors are clustered at the session level. Column 1 of Table 1 presents the results.

We find that revealing data on a medium-value mountain reduces group payoffs by approximately

5% relative to the no-data condition, consistent with Proposition 1. Providing data on a high-value

mountain increases payoffs by 44.5 percentage points. In contrast, revealing a low-value mountain has

no statistically significant effect on group performance.

Group Exploration. Our theoretical framework suggests that partial data on project value can

discourage exploration, effectively crowding out data generation. To test this, our next outcome of

interest is the share of unmapped mountains explored in a round. Panel (ii) of Figure 2 shows that

revealing the location of a medium-value gem significantly reduces exploration. We quantify this

using an OLS specification similar to Equation (5), with the dependent variable defined as the share

of unmapped mountains explored by the group across both periods.7 The results in Table 1 show that

revealing a high-value gem eliminates the need for exploration, while revealing a low-value gem has

no measurable effect. Most notably, revealing a medium-value gem decreases the share of mountains

explored by 38.6 percentage points relative to the no-data condition (Column 2). This provides a clear

demonstration of the streetlight effect: data can shift the balance from exploration to exploitation,

ultimately reducing social welfare by leaving participants stuck on a suboptimal outcome.

Group Breakthroughs. The final outcome of interest is the likelihood that participants discover the

high-value option. Panel (iii) of Figure 2 shows that revealing the location of a medium-value gem
7Note that there are four unmapped mountains in each of the three data conditions and five in the no-data condition.
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significantly lowers the chances of a breakthrough. We quantify this effect using a linear probability

model based on the specification in equation (5), with the dependent variable indicating whether a

group discovers a high-value gem. Since not all rounds contain a diamond, we limit the analysis to

rounds where at least one high-value gem is present. As shown in Column 3 of Table 1, revealing

a medium-value mountain reduces the likelihood of discovering the maximum by 56% compared to

the no-data condition. In contrast, we find no such reduction when the revealed data points to a low-

or high-value gem. Taken together, these results support the predictions of Proposition 3: while data

can increase payoffs when it points to the best option, it can also impose substantial societal costs

depending on the underlying payoff structure.

The Impact of Competition. Our theory shows that the presence of payoff competition can reduce

the intensity of the streetlight effect. We test this experimentally by varying N̄ , the number of players

who can choose a mountain before payoffs fall to zero. The results from the baseline case, presented

earlier, implicitly correspond to N̄ = 5, where players can choose without penalty. We then examine

two more conditions: intermediate rivalry (N̄ = 3) and extreme rivalry (N̄ = 1). In the intermediate

case (Panel A, Table 2), the streetlight effect weakens but does not disappear. Revealing the medium

option no longer affects payoffs, but still reduces exploration by roughly 20 percentage points and the

likelihood of a breakthrough by 24.5 percentage points (significant at the 10% level). Revealing the

high option still increases payoffs and reduces exploration, while revealing a low option continues to

have no effect. Under extreme rivalry (Panel B, Table 2), initial data has no significant impact on

payoffs, exploration, or breakthroughs. Consistent with Propositions 4 and 5, the streetlight effect

declines with increased rivalry and disappears when payoff competition is strongest.

4 Empirical Application: The Genetic Roots of Human Diseases
The preceding sections formalized and tested how the streetlight effect can emerge in lab-based search

tasks. We now turn to an empirical application that shows how our framework helps explain real-world

patterns in scientific research.

4.1 Setting

Our application examines biomedical research, focusing on scientists’ efforts to identify genetic

mutations that cause human diseases (see Appendix B for details). Genes carrying causal mutations can

serve as drug targets, substantially improving the chances of developing effective treatments (Nelson

et al., 2015). However, finding breakthrough targets is a complex search problem: there are over
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19,000 protein-coding human genes, each potentially a drug target. In practice, scientists must choose

between further investigating known genetic targets or exploring novel candidates. Despite individual

incentives to establish priority in new areas (Bobtcheff et al., 2017; Hill and Stein, 2025a), exploration

across the genetic space has remained surprisingly limited (Edwards et al., 2011). Research continues

to focus on a subset of human genes, a puzzling pattern given widespread recognition that promising

drug targets may lie among less-studied genes (Stoeger et al., 2018). One explanation, echoing the

streetlight effect, is that earlier data on seemingly promising—but ultimately unproductive—genes

have focused scientists’ efforts away from exploring more valuable alternatives (Haynes et al., 2018).

To illustrate this, consider two examples of genetic disorders described in Figure 3. As noted in the

introduction, research on Tangier disease followed a revealing trajectory. A 1982 study identified

a moderate link to the APOA1 gene, which attracted subsequent attention and diverted exploration

away from alternative candidates. However, Tangier disease is actually caused by mutations in the

ABCA1 gene, which impair the production of functional HDL-C particles. This genetic target was

only discovered in 1999. In contrast, the search for the cause of Gardner syndrome, a genetic colon

polyposis, unfolded differently. Early investigations yielded only weak associations, prompting a

broader search effort. This eventually led to the discovery of mutations in the APC gene, a tumor

suppressor that plays a central role in controlling cell growth and is strongly linked to the condition.

The APC discovery happened in 1991, eight years before the key breakthrough in Tangier disease,

despite both diseases receiving a similar number of publications. These contrasting case studies

highlight the streetlight effect in action: the disease that initially showed clearer research progress

reached its breakthrough much later.

Building on these cases, we turn to a systematic empirical investigation. Our central proposition is that

early discoveries of moderate promise can narrow scientific focus and slow the identification of true

genetic drivers. In contrast, weaker early findings tend to promote broader exploration and accelerate

discovery. The parallels to our theoretical framework are clear: just as agents in our model search for

valuable projects or participants in the lab look for gems hidden in mountains, scientists navigate a

vast genetic landscape in pursuit of scientific breakthroughs.

4.2 Data

DisGeNET Database. We compile a dataset of genetics research from 1980 to 2019 using DisGeNET

(v7.0), a comprehensive database of gene–disease links drawn from curated sources and PubMed-

indexed publications (Piñero et al., 2020; Tranchero, 2025). Because DisGeNET does not include
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author information, we supplement it with disambiguated data from Author-ity 2018 (Torvik and

Smalheiser, 2021). Additional details on both data sources are provided in Appendix B. Our analysis

focuses on articles investigating associations between protein-coding genes and diseases, syndromes,

or abnormalities with clear health relevance. For each disease, we record the number of publications

along with information on the novel genetic candidates identified each year. To filter out conditions

unlikely to have a genetic basis, we restrict the sample to diseases with at least 10 publications over

the study period, but results are robust to different cut-offs. The final dataset captures the search and

discovery trajectories of 5,519 diseases over a 40-year span.

Measuring the Scientific Value of Genetic Discoveries. Scientists aim to identify genes of high

scientific value for each disease. Mirroring our theoretical setup, we classify genetic candidates for

a disease into three categories: weak targets (L), middle-value leads (M ), and breakthroughs (H).

We rely on the score provided by DisGeNET for each gene–disease pair, which ranges from 0 to 1

and summarizes the strength of the available scientific evidence. The score incorporates the number

of supporting sources weighted by their credibility, with curated information receiving the greatest

weight. We provide extensive details on the DisGeNET score and its features in Appendix B.3. For

interpretability, we express a gene–disease pair’s scientific value as its percentile within the overall

score distribution. Genes below the 60th percentile are classified as low value, those between the

60th and 90th percentiles as medium value, and those above the 90th percentile as high value. These

categories closely align with real-world indicators of therapeutic relevance: clinical citations, approved

patents, and granted drugs all increase monotonically with our score categories (Appendix Figure B.1).

Genetic Data Available to Scientists. Our objective is to assess how information on the scientific

value of gene candidates shapes subsequent exploration patterns for a given disease. We build on the

idea that early discoveries provide data that scientists can choose to exploit through repeated studies,

rather than search for new candidates. We define the early search window as the period from 1980 to

2000, which marks the first half of our sample and accounts for just 10% of all publications, during

which scientists began identifying potential gene targets. For each disease, we record the highest-

scoring gene candidate identified during this period, classifying it as low (L), medium (M ), or high

(H) based on the categories described above. This captures the state of genetic knowledge available

to researchers as of 2000. We then examine how the nature of this early data shapes research activity

in the second half of the sample period (2000–2019). Figure C.1 provides a stylized overview of this

empirical setup.
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Dependent Variables. We construct a dataset at the disease level to examine how cross-sectional

differences in early data shape subsequent exploration. Our first dependent variable captures whether

scientists identified a gene-disease pair with a high DisGeNET score, corresponding to a breakthrough

discovery at the group level in our experimental setup. The second dependent variable measures the

number of new gene candidates explored after the early search window, allowing us to assess how the

scientific promise of early data constrains the diversity of follow-on research. To account for variation

in research intensity across diseases, we normalize this variable by dividing the number of new genes

explored by the number of publications. In practice, this captures changes in the average number of

new genes explored per disease. The third dependent variable measures the number of years required

to reach a breakthrough, defined as the number of years since 1980 (the start of our sample period).

This group-level delay offers a concrete indication of the societal cost imposed by the streetlight

effect. We include the total number of publications focused on each disease as a control to account

for variation in research effort. In addition, DisGeNET assigns each condition a set of disease classes

based on the MeSH vocabulary, and our data include 536 unique disease class combinations. Disease

class captures features such as whether a condition is congenital or acquired. We include disease-class

fixed effects to control for unobserved characteristics shared by similar diseases, and cluster standard

errors at the disease-class level to account for correlations across related conditions.

Summary Statistics. Table 3 reports descriptive statistics for the 5,519 diseases in our sample. By

the year 2000, 10% of diseases show early data pointing to an L target, 32% to an M target, and the

remainder to an H target. The H category is less informative for our purposes, as a breakthrough

has already occurred in the early exploration window.8 On average, it takes 21.8 years to identify

a high-value genetic target for a disease by the end of the sample period. Each disease is linked to

approximately 295 publications, involving 186 unique principal investigators (PIs), and associated

with the discovery of about 130 genes.

5 Empirical Results

5.1 Cross-Sectional Evidence

We begin by examining how the likelihood of a breakthrough varies with early scientific data, com-

paring outcomes for diseases with information only on low-value genes to those with data on genes of

medium or high value. To do this, we estimate the following cross-sectional OLS specification at the
8Note that we do not include a “no data” condition here, as most diseases had seen some level of investment before 2000.
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disease level:
Breakthrough (0/1)i = α+ β(Max Found : Xi) + γXi + ϵi, (6)

where Breakthrough (0/1)i equals 1 if at least one publication discovers a genetic target with a high

DisGeNET score for disease i, and 0 otherwise. The variable (Max Found : Xi) is a categorical

indicator for the highest DisGeNET score identified in the early search window, classified as L, M ,

or H . X i,t is a vector of controls that includes the number of publications on the disease, as a proxy

for search efforts, and fixed effects for disease class, taking into account broader genetic similarities

between related diseases. The results are reported in Panel A of Table 4. While early data on a

high-value genetic target mechanically increases the likelihood of a breakthrough, the more interesting

comparison lies with medium-value targets. Diseases with early data on medium-value genes are

11 percentage points less likely to experience a breakthrough than those with only low-value initial

findings.

One possible explanation for this counterintuitive finding is that the early discovery of a promising—

but ultimately suboptimal—genetic target diverts attention from the search for a true breakthrough.

Column 2 of Table 4 presents evidence consistent with this mechanism. Using the same specification

as in Equation (6), we find that early data on a medium-value target reduces exploration of new genes

by almost 20 percentage points. Notably, this drop is nearly half as large as the effect of an early

breakthrough itself. Column 3 quantifies the real-world cost of reduced exploration. Identifying a

medium-value target early on delays the eventual breakthrough by 1.7 years, which corresponds to an

increase of 8% relative to the sample mean of 21.7 years.

Our theoretical framework and behavioral experiments suggest that the streetlight effect should weaken

as rivalry increases. Does this prediction hold in our empirical setting? In our experiments, we can

directly manipulate the threshold N̄ , which represents the number of individuals who can benefit

from a project before the payoff erodes. Here, we take N̄ as fixed, assuming it is broadly similar

across diseases due to common scientific norms of credit allocation. Still, our comparative statics in

Propositions 4 and 5 show that even with a constant N̄ , increasing N (i.e., the number of competitors)

should reduce the streetlight effect. This insight allows us to proxy rivalry empirically using the

number of scientists who have studied each disease, echoing recent work on competition in science

(Hill and Stein, 2025a). We classify diseases as more or less competitive based on the number of

active PIs. Using our cross-sectional specification from Equation (6), we run split-sample regressions

for diseases in the top and bottom quartiles of this distribution.
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The results of this analysis are presented in Panel B of Table 4. In Column 1, where we restrict the

sample to diseases with fewer scientists, we find that early data on a medium-value target reduces the

likelihood of a breakthrough by 17 percentage points. By contrast, for diseases with more competition

(Column 2), there is no significant change in breakthrough likelihood. A similar pattern holds for

exploration activity: early data reduces exploration of new genes by 20% relative to the sample mean

in diseases with fewer scientists (Column 3), but this effect disappears when more PIs are engaged

in the search for genetic roots (Column 4). Finally, early data on a tempting genetic target increases

the time to breakthrough in diseases with fewer researchers involved (Column 5), while the effect is

not significant in more competitive settings (Column 6). Taken together, these results suggest that

competition helps offset the streetlight effect that uneven data availability might create.

5.2 Instrumental Variables (IV)

The empirical patterns are consistent with our theorization of the streetlight effect and echo concerns

raised by scientists about the lack of exploration in this field (Haynes et al., 2018; Stoeger et al.,

2018). However, issues about causality remain, since the generation of early data reflects scientists’

endogenous exploration choices. As a first step, we note that including fixed effects for disease classes

helps control for unobserved characteristics shared across related diseases. Yet, certain disease-specific

features could still correlate with the nature and volume of early scientific data, potentially driving our

results.

To help rule out this concern and bolster the causal interpretation of our findings, we leverage the

fact that many human genes have orthologous counterparts—that is, genes in other species that

share a common ancestor gene and thus retain similar biological sequences and functions. Scientists

frequently use animals as models to experimentally study human orthologs at lower cost and with

fewer ethical constraints (Li et al., 2017). In particular, genes with orthologs in the commonly used

laboratory mice tend to receive more attention from scientists out of sheer convenience (Stoeger

et al., 2018). We retrieve information on gene orthology from the National Center for Biotechnology

Information (NCBI). In our data, human genes with mouse orthologs appear 2.6 years earlier in

scientific publications and are about 27% more likely to have been explored before the year 2000

(Figure 4, Panel A). This confirms that researchers often prioritize these genes, and within a disease,

their discoveries emerge earlier (Appendix Table C.1). Yet, nothing ensures that orthologs are equally

relevant for every disease. Since the strength of any association between these overlapping genes and

a given disease is effectively exogenous, delays stemming from researchers focusing on medium-value
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orthologous genes can be more credibly attributed to convenience rather than to unobserved disease

characteristics.

Building on this intuition, we construct an instrumental variable based on the distribution of orthol-

ogous gene candidates. For each disease, we measure the share of orthologous genes classified as

medium-value (M ) candidates (see Appendix Figure C.2 for a stylized visualization). If the orthol-

ogous gene pool contains more medium-value targets for a particular disease, scientists should be

more likely to encounter a medium-value discovery early in their exploration. Indeed, our instrument

exogenously shifts the probability of identifying a medium-value gene, as confirmed by a strong

first-stage regression (Figure 4, Panel B). For example, Tangier Disease has 27 gene candidates with

mouse orthologs, 7 of which are medium-value (M shareTangier = 26%); APA01, an M ortholog, was

indeed discovered early, in 1982. In contrast, only 2 of Gardner Syndrome’s 23 orthologous genes are

of medium-value (M shareGardner = 8%), leading scientists to identify the causal APC gene without

distraction by medium-value discoveries. Figure C.3 supports this logic across our broader sample

of diseases, showing reduced-form evidence linking the M share of ortholog genes to breakthrough

likelihood, exploration extent, and discovery delay.

The results of our IV analysis are presented in Table 5. We replicate the same three cross-sectional

specifications as before, but now instrument for (MaxFound : M) using the share of ortholog genes

corresponding to an M target. In this setup, the 2SLS coefficients can be interpreted as a local average

treatment effect (LATE), capturing the effect in the subset of diseases for which the instrument shifts

the likelihood of identifying an M target. Column 1 presents the first stage of our IV, showing that

the M share of ortholog genes is strongly associated with the highest-scoring gene association being

M , with an F-statistic of 154. Columns 2 through 4 report the second-stage results for our three

main outcomes. Consistent with our earlier findings, we find that early data on a medium-value target

reduces the likelihood of a breakthrough (Column 2), decreases the number of new genes explored

(Column 3), and increases the delay to a breakthrough (Column 4). This analysis confirms that the

patterns observed in genetics stem from the streetlight effect created by early data (Haynes et al., 2018).

5.3 Exploration Dynamics

Next, we offer additional evidence to bolster confidence in the mechanism proposed by our theory. If

early data on medium-value genetic targets indeed crowds out exploration, we should see a drop in

research efforts aimed at discovering new genes in the years following a medium-value gene. To test

this idea, we construct a panel at the disease-year level. While our earlier analyses relied on cross-
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sectional estimates at the disease level, this alternative approach allows us to track how exploration

patterns change over time. For each disease, we count the number of new genes investigated in a

given year, along with the total number of publications as a proxy for research effort. Appendix Table

C.2 presents descriptive statistics at the disease-year level. On average, each disease receives 7.4

publications per year focused on its genetic underpinnings, typically leading to the exploration of 3.3

new genes.

We then estimate the following event study specification using OLS:

Group Explorationi,t = α+
∑
z

βtMedium Genei × 1(z) + γXi,t + ϵi,t, (7)

where Group Explorationi,t denotes the number of new genes explored for disease i in year t,

normalized by the number of articles published. Medium Genei×1(z) the number of years that have

elapsed since a medium-value association was first discovered for disease i, and X i,t is a vector of

controls that include disease fixed effects, year fixed effects, and the number of papers published each

year. For the small number of diseases with multiple medium-value genes, we define the time lags

relative to the discovery of the first one. To account for the mechanical uptick in exploration during the

year of discovery, we exclude the focal gene and its corresponding publication from our calculations,

but our results are robust to their inclusion.

Panel A of Figure 5 plots the regression coefficients. The results show an immediate, significant, and

persistent drop in exploration following the discovery of a medium-value genetic target. Reassuringly,

there is no evidence of pre-trends, suggesting that the observed decline is indeed driven by the discovery

itself. In Panel B, we re-estimate the specification in Equation (7) and find a similar pattern: research

efforts on new genes also decline after the discovery of a high-value target. Appendix Table C.5

reports the corresponding estimates from a difference-in-differences specification. We find that yearly

exploration of new genes drops by 24% relative to the sample mean after a medium-value target is

identified. The effect is even larger following the discovery of a high-value target, with exploration

falling by around 35%. Taken together with the IV results, these estimates offer additional support for

the predictions of our theoretical framework.

5.4 Robustness

We assess the robustness of our results by relaxing several key choices in the main specification. First,

while we excluded diseases with very few publications to focus on those more likely to have genetic

roots, our results hold under alternative sample cut-offs (Appendix Table C.6). Similarly, excluding
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the top 1% of most-studied diseases does not change the findings (Appendix Table C.7). Second,

we defined payoffs based on percentiles of the DisGeNET score. While our definitions map into

real-world outcomes (Appendix Figure B.1), changing the percentiles used to define an M genetic

discovery does not affect our results (Appendix Tables C.8 and C.9). Third, redefining the early search

window yields consistent results (Appendix Table C.10). Appendix Table C.11 shows robustness to

a disease-specific definition, where “early” refers to the years before the first 10% of publications for

each disease. Finally, the findings remain stable under alternative windows for tracking exploration

dynamics following an M discovery (Appendix Table C.12).

One potential concern is that focusing on a medium-value gene could be a rational choice when there

is ambiguity about whether a high-value target exists at all. This might partly explain the drop in

exploration following the discovery of an M . To address this, we draw on the genetic relationships

between diseases. The MeSH vocabulary defines hierarchical linkages between diseases based on

shared etiology, biological mechanisms, and other biomedical features. Using this classification, we

restrict the analysis to diseases closely related to conditions where a breakthrough (H) has already

occurred. In these cases, the existence of valuable targets is less ambiguous, as related diseases often

share underlying biological processes.9 Re-estimating the event study specification in Equation (7), we

find consistent results: as shown in Figure C.4, data on a medium-value gene still dampens exploration,

even within this subset of diseases.

Relatedly, it is possible that our cross-sectional results reflect the absence of valuable genetic targets,

rather than suboptimal exploration behavior. To test this, we narrow our analysis to diseases that had

a high-value genetic association identified by 2019. These results are presented in Appendix Table

C.13. While this restriction prevents us from estimating effects on group breakthroughs, we still

observe longer delays for diseases where early data pointed to an M -value target. We find no change

in exploration over the full sample period, likely because all diseases in this sample eventually saw

a breakthrough and, by definition, received some level of exploration. Still, we detect a significant

decline in exploration activity in the years immediately following the early M discovery.

Finally, one reason scientists might continue to focus on M candidates is the prospect of positive

spillovers that could benefit research on related diseases. These spillovers could come from comple-
9For instance, Ulcerative Colitis [MeSH tree code: C06.405.469.432.249] and Crohn’s Disease [MeSH tree code:
C06.405.469.432.500] are “sibling” sub-branches of the “parent” disease Inflammatory Bowel Diseases [MeSH tree
code: C06.405.469.432]. Once a gene is identified as a high-value target for Crohn’s there is a higher chance that a
breakthrough exists for Ulcerative Colitis (which could either be the same gene or another one).
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mentary insights, such as new methods or a deeper understanding of protein function and genetics. If

genes classified as M in one disease often end up as H candidates in related diseases, then continued

focus on them might be rational. To evaluate this possibility, we test whether a gene is more likely

to be a breakthrough for a given disease when it is classified as an M in a related disease. The

results are presented in Panel A of Appendix Table C.14. The effect is small and only slightly larger

than when the gene is classified as L, and much smaller than when it is classified as H in a sibling

disease. By contrast, as Panel B shows, genes classified as M for one disease are likely to remain

M in related diseases. This suggests that spillovers are limited in scope and are unlikely to justify

continued attention to M candidates.

6 Conclusion

In this paper, we examine the paradoxical role of data provision in shaping innovative search, a dynamic

we refer to as the “streetlight effect.” Our theoretical model shows that access to partial data on past

successes can narrow the search space and trigger free-riding, ultimately reducing the diversity of

exploration and hampering breakthrough discoveries. This prediction is supported by our empirical

findings. In our lab experiments, revealing data on a medium-value project lowered group payoffs

by 5% and reduced the likelihood of a breakthrough by 56% compared to the no-data condition. We

extend this analysis using observational data from scientific research on the genes responsible for

human diseases. Our approach includes multiple research designs, including an instrumental variable

strategy based on exogenous genetic overlaps between human and mouse genes. The results show

that diseases with early data on a middle-value target are, on average, 16 percentage points less likely

to yield breakthroughs, with discoveries delayed by nearly three years due to reduced exploration.

We also find that payoff competition moderates these effects by lowering the attractiveness of known

options and breaking the cycle of low data generation. Taken together, our theoretical, experimental,

and empirical evidence highlights how the streetlight effect shapes the direction of innovative search.

Our findings challenge the conventional belief that more data is always better for innovation. When data

is incomplete and narrowly focused, as in our setting, it can unintentionally steer researchers toward

suboptimal projects. Our evidence from genetics highlights how this pattern can emerge endogenously

in decentralized and parallel exploration endeavors such as scientific research. This has important

implications for policymakers and funding agencies involved in data creation and dissemination, whose

goal should be to provide broad “floodlights” that illuminate the entire search space. Our findings

reinforce the value of publicly funded, comprehensive mapping initiatives such as the Human Genome
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Project (Williams, 2013) and Landsat satellite imagery (Nagaraj, 2022), which serve as shared data

infrastructure for scientific discovery. They also highlight the importance of strengthening institutions

such as the U.S. Census Bureau’s FSRDCs (Nagaraj and Tranchero, 2024), which enable research

access to existing large-scale datasets at relatively low public cost.

For individual innovators, the key takeaway is that past data should be treated as a strategic input

rather than followed blindly. In environments where data is uneven or incomplete, setting aside

existing information can promote breakthrough innovation. Our findings lend support to corporate

practices like skunkworks, where firms intentionally restrict the internal diffusion of early R&D

results. They also underscore the value of delaying the release of intermediate project information

unless there is strong evidence that the project represents a high-value lead (Boudreau and Lakhani,

2015). More broadly, as innovation and decision-making become increasingly data-driven, it is

important to recognize that technologies like AI are often trained on uneven historical data. This

can inadvertently narrow the scope of exploration by reproducing the streetlight effect (Kim, 2023).

While most existing work has focused on the risk of false positives in AI predictions (Toner-Rodgers,

2024; Tranchero, 2024), our evidence suggests that the risk of false negatives in data-driven innovation

may be even greater. At the same time, AI enables initiatives like AlphaFold, which provide broad

and unfiltered predictions supporting discovery beyond the bounds of known data. Understanding the

nuanced implications of AI for innovation is an exciting direction for future research.

While our study draws strength from combining theoretical modeling, laboratory experimentation, and

empirical analysis, there remain several opportunities for further improvement. One direction would

be to extend the current two-period framework into a continuous learning model, which would better

capture the iterative and dynamic nature of innovation. Our model could also be extended to explore

how control rights in organizations might help coordinate search efforts and prevent herding (Aghion

et al., 2008; Arora et al., 2025). Another promising avenue lies in broadening our definition of data to

include dimensions such as precision, informativeness, and bias, all of which are likely to shape search

behavior in meaningful ways. The observational analysis, while strengthened by an instrumental

variable approach, could also be complemented by research designs that introduce direct experimental

variation in the data provided. Expanding the analysis to consider a broader set of innovation outcomes

across diverse domains would further enhance the generalizability of our findings.
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7 Tables and Figures

Panel A: User Interface

Panel B: Examples of No-Data Condition and Data Conditions

(i) No-data condition (ii) Low-value condition

(iii) Medium-value condition (iv) High-value condition

Figure 1: Experimental Platform.

Note: This figure shows the interface participants saw during our online experiment. Panel A illustrates the platform as it
appeared in the no-data condition. In this example, Mountain 4 was selected by one other participant, while the user chose
Mountain 5. Note that the dollar value of the gems changes in every round and is displayed on the left. Panel B presents
the four experimental conditions. In the data condition, participants are shown the value of the gem hidden behind one
randomly selected mountain—this could be the medium, the high, or one of the low outcomes. .
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i) Group Payoffs ii) Share of Mountains Explored iii) Likelihood of Breakthrough

Figure 2: Round Outcomes by Experimental Condition.

Note: Figure (i) displays the average group payoffs per round, by experimental condition. Payoffs are calculated as a
share of the maximum possible payoff possible in each round. Figure (ii) shows the average share of unmapped mountains
selected per round, by experimental condition. Figure (iii) reports the proportion of rounds in which the maximum payoff
was uncovered, by experimental condition. Error bars indicate 95% confidence intervals. See text for more details.
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Table 1: Round-Level Experimental Outcomes.

Group Payoff Group Exploration Group Breakthrough

(1) Group Earnings ($) (2) Options Explored (%) (3) Found Maximum (0/1)

High 44.520∗∗∗ -81.330∗∗∗ -1.500
(0.894) (3.049) (4.277)

Low 1.545 4.598 -2.045
(1.228) (3.120) (3.631)

Medium -3.133∗∗∗ -38.634∗∗∗ -56.338∗∗∗

(0.670) (2.577) (5.057)

Session FE Yes Yes Yes
Block order FE Yes Yes Yes
Payoff structure FE Yes Yes Yes
Observations 480 480 364

Note: † p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001. Standard errors clustered at the session level
in parentheses.
Estimates from OLS models. The unit of analysis is the group-round level (480 rounds in total). Column
2 includes only the rounds in which at least one diamond was present (364 rounds). In all models, payoffs
are non-rival if multiple agents choose the same project. Group Earnings= sum of payoffs in a group-
round; Options Explored= share of unknown mountains explored in the round; Found Maximum:0/1=1 if
the location of the maximum was found by any participant. The excluded category is the control condition
without data. See text for more details.
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Table 2: Round-Level Outcomes of the Experiment with Payoff Rivalry.

Panel A: Intermediate Payoff Rivalry

Group Payoff Group Exploration Group Breakthrough

(1) Group Earnings ($) (2) Options Explored (%) (3) Found Maximum (0/1)

High 19.048∗ -15.520∗ -3.681
(2.253) (1.918) (1.712)

Low -7.212 8.759† -4.162
(2.803) (2.939) (5.394)

Medium -1.118 -19.870∗∗∗ -24.470†

(1.714) (0.524) (5.726)

Session FE Yes Yes Yes
Block order FE Yes Yes Yes
Payoff structure FE Yes Yes Yes
Observations 120 120 90

Panel B: Extreme Payoff Rivalry

Group Payoff Group Exploration Group Breakthrough

(1) Group Earnings ($) (2) Options Explored (%) (3) Found Maximum (0/1)

High 3.698 0.000 -0.000
(2.400) (0.000) (0.000)

Low -6.888† 0.000 -0.000
(1.753) (0.000) (0.000)

Medium 3.345∗ 0.000 -0.000
(0.364) (0.000) (0.000)

Session FE Yes Yes Yes
Block order FE Yes Yes Yes
Payoff structure FE Yes Yes Yes
Observations 120 120 90

Note: † p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001.
Estimates from OLS models. The unit of analysis is the group-round level. In Panel A, payoffs exhibit
intermediate rivalry (N̄ = 3), meaning that once three agents have selected the same mountain in a given
period, any additional agents choosing that mountain will receive a payoff of zero. In Panel B, payoffs
exhibit extreme rivalry (N̄ = 1), where only the first agent selecting a mountain earns a positive payoff,
while any subsequent agents choosing the same mountain receive a payoff of zero. Group Earnings= sum
of payoffs in a group-round; Options Explored= share of unknown mountains explored in the round; Found
Maximum:0/1=1 if the location of the maximum was found by any participant. The excluded category is
the control condition without data. See text for more details.
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Panel A: Gardner’s Syndrome

Panel B: Tangier’s Disease

Figure 3: Two Case Studies in Search for the Genetic Origins of Human Diseases.

Note: The solid black line shows the cumulative number of gene candidates explored for the disease up to each year. Panel
A displays data for Gardner’s syndrome, with the vertical line marking the year the association with the APC gene was
discovered (DisGeNET score in the 99th percentile). Panel B shows data for Tangier’s disease. The first vertical line marks
the discovery of the APA01 association (DisGeNET score in the 60th percentile), while the second marks the discovery of
the ABCA1 association (DisGeNET score in the 99th percentile). All other genes explored were below the 60th percentile
of the DisGeNET score.
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Table 3: Descriptive Statistics of the DisGeNET Database.

Mean Median Sd Min Max N

Max Found: Low (0/1) 0.10 0.00 0.30 0 1 5519
Max Found: Medium (0/1) 0.32 0.00 0.47 0 1 5519
Max Found: High (0/1) 0.58 1.00 0.49 0 1 5519
Year of First Low Score 1991.45 1992.00 5.58 1980 2000 1530
Year of First Medium Score 1993.71 1994.00 7.42 1980 2019 2890
Year of First High Score 1994.98 1995.00 8.13 1980 2019 3964
Delay (Years since 1980) 21.75 18.00 12.82 0 39 5519
Total Publications 294.63 48.00 1983.81 9 94470 5519
Total Genes Discovered 129.95 32.00 394.35 1 8545 5519
New Genes per Paper 0.73 0.72 0.50 0 9 5519
Total PIs on disease 186.34 38.00 1042.30 5 43749 5519

Note: This table presents cross-sectional descriptive statistics for our sample at the disease level. Max
Found: Low: 0/1=1 if the gene with the highest DisGeNET score found during the early exploration period
is classified as L. Max Found: Medium: 0/1=1 if the gene with the highest DisGeNET score found during
the early exploration period is classified as M . Max Found: High: 0/1=1 if the gene with the highest
DisGeNET score found during the early exploration period is classified as H . Year of First Low Score = the
year of the first discovery involving a gene in the L category. Year of First Medium Score: the year of the
first discovery involving a gene in the M category. Year of First High Score: the year of the first discovery
involving a gene in the H category. Delay (Years since 1980) = the number of years elapsed before any H

gene is discovered for the disease. Total Publications = the number of publications about the disease during
the sample period (1980-2019). Total Genes Discovered = the number of genes explored for the disease
during the sample period (1980-2019). New Genes per Publication = the number of new genes explored
per scientific publication during the sample period (1980-2019). Total PIs = the number of unique principal
investigators (PIs) that have studied the disease during the sample period (1980-2019). See text for more
details.
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Table 4: Disease-Level Outcomes of Genetic Search.

Panel A: Full Sample

Group Breakthrough Group Exploration Group Delay

(1) High-Value Gene (0/1) (2) New Genes/Papers (3) Years From 1980
Max Found: M -0.105∗∗ -0.144∗∗∗ 1.743∗∗∗

(0.033) (0.023) (0.519)

Max Found: H 0.514∗∗∗ -0.261∗∗∗ -20.371∗∗∗

(0.042) (0.028) (0.692)

Disease Class FE Yes Yes Yes
Count of Publications Yes Yes Yes
N 4760 4760 4760

Panel B: Split Samples

Group Breakthrough Group Exploration Group Delay

High-Value Gene (0/1) New Genes/Papers Years From 1980

High Competition: (1) No (2) Yes (3) No (4) Yes (5) No (6) Yes
Max Found: M -0.165∗∗∗ -0.0439 -0.144∗∗ 0.0779 2.492∗∗∗ 2.296

(0.0433) (0.154) (0.0510) (0.0972) (0.637) (2.973)

Max Found: H 0.516∗∗∗ 0.541∗∗∗ -0.132† -0.00319 -18.66∗∗∗ -21.45∗∗∗

(0.0470) (0.159) (0.0790) (0.0949) (0.674) (2.992)

Disease Class FE Yes Yes Yes Yes Yes Yes
Count of Publications Yes Yes Yes Yes Yes Yes
N 1106 1236 1106 1236 1106 1236

Note: † p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001.
Standard errors clustered at the disease-class level in parentheses.
Estimates from OLS models. The unit of analysis is the disease level. In Panel A, we report estimates
from the full sample of diseases. For each human disease, we identify the highest DisGeNET score among
all genes discovered during the exploration period (i.e., before 2000). In Panel B, we report split-sample
results that test how our results vary between diseases with more or less competition. Columns (1), (3),
and (5) present results for diseases with a bottom-quartile number of principal investigators during the
exploration window, while Columns (2), (4), and (6) show results for those with a top-quartile number. We
categorize the maximum scores as follows: scores below the 60th percentile are labeled L, those between
the 60th and 90th percentiles as M , and those above the 90th percentile as H . High-Value Gene: 0/1=1 if
any H candidate was discovered for the disease. New Genes/Papers= the number of new genes explored
per scientific publication in the years following the exploration period. Years From 1980= the number of
years until the first H candidate is discovered. In all models, diseases in category L serve as the reference
group. We include disease-class fixed effects and control for the number of publications post-2000. See
text for more details.
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Panel A: Genes with a Mouse Orthologs are Explored Earlier

Panel B: First-Stage Evidence for the Instrumental Variable

Figure 4: Visual Evidence for Our Instrumental Variable Strategy.

Note: Panel A provides evidence at the gene level that early research tends to focus on genes with mouse orthologs. Each
chart shows OLS estimates and 95% confidence intervals estimated from a regression. First year= the first year a study
exploring a given gene is published. Explored before 2000: 0/1=1 if the gene was explored before the year 2000 for at
least one disease. Panel B provides a binscatter of the first stage of our disease-level instrumental variable in Table 5. M
Share of Orthologs: share of orthologous genes (i.e., those with a mouse ortholog) that fall into the M category for each
disease. (Max Found: M): 0/1=1 if the maximum DisGeNET score found during the exploration period is classified as M .
See text for more details
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Table 5: Instrumental Variable Evidence from Human-Mouse Gene Orthologs.

First Stage Second Stage

Max Found: M High-Value Gene (0/1) New Genes/Papers Years From 1980
(1) (2) (3) (4)

M Share of Orthologs 0.694∗∗∗
(0.0559)

Max Found: M -0.600∗∗∗ -0.847∗∗∗ 15.93∗∗∗

(0.0567) (0.197) (2.132)

F-Statistic (First Stage) 154.12

Disease Class FE Yes Yes Yes Yes
Count of Publications Yes Yes Yes Yes
N 4757 4757 4757 4757

Note: † p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001. Standard errors clustered at the disease-class
level in parentheses. We report the effective first-stage F statistic from Olea and Pflueger (2013).
Estimates from 2SLS models. The sample is at the disease level. For each human disease, we identify
the highest DisGeNET score among all genes discovered during the exploration period (i.e., before 2000).
To construct our instrument, we calculate the share of each disease’s orthologous gene candidates (i.e.,
those with a mouse ortholog) that fall into the M category. We categorize the maximum scores as follows:
scores below the 60th percentile are labeled L, those between the 60th and 90th percentiles as M , and those
above the 90th percentile as H . High-Value Gene: 0/1=1 if any H candidate was discovered for the disease.
New Genes/Papers= the number of new genes explored per scientific publication in the years following the
exploration period. Years From 1980= the number of years until the first H candidate is discovered. In all
models, diseases in categories L and H serve as the reference group. We include disease-class fixed effects
and control for the number of publications post-2000. See text for more details.
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Panel A: Discovery of an M Panel B: Discovery of an H

Figure 5: Dynamic Effects of the Discovery of an M or H Genetic Target on Exploration.

Note: Panel A plots OLS estimates and 95% confidence intervals from an event study design that explores how genetic
exploration in each disease evolves after the discovery of the first medium-value genetic target. Panel B plots analogous
estimates for the discovery of the first high-value genetic target. For each human disease, we classify DisGeNET scores
below the 60th percentile as a “low” gene discovery, scores between the 60th and 90th percentile as a “medium” gene
discovery, and scores above the 90th percentile as a “high” (or breakthrough) gene discovery. Standard errors are clustered
at the disease class level. See text for more details.
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