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A Logistics of the Experiment

Figure A.1 summarizes how our experimental sessions unfolded. When participants join, they are
assigned either to a data or to a no-data condition.20 The experiment begins when a total of ten players
are assigned to the same experimental set. Then, from each of these experimental sets, two groups of
five people are randomly drawn to play the first five rounds (what we labeled as “block”). At the end of
the block, the composition of the two groups is randomly reshuffled, and a second block of five rounds
is played. This procedure is repeated a total of four times so that each player ends up playing exactly
twenty rounds. The order of blocks seen by participants in different experimental sessions is random.
The payoff structure changes each round according to a pre-recorded script generated stochastically
so that the actual payoffs of each round appear random for the player. Similarly, the specific order in
which specific gems are revealed in the treatment condition is generated by a random script before the
experiment begins.

Figure A.1: Flowchart of the experimental setup.

Note: This figure provides an overview of the experiment for one actual session that took place in September 2022.

20Not in every experimental session there was a no data condition, in which case the players would be randomly split (and
then reshuffled) across two distinct data conditions.
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Table A.1 presents the main descriptive statistics for the experimental data, shown separately by
treatment condition. Overall, the table already shows our main results in terms of payoffs and
discovery while also reassuring that player characteristics were well-balanced across conditions.

Table A.1: Descriptive statistics of the experimental data.

N Mean SD Median Min Max

Individual Payoff (Share)
Low 2870 72.24 18.63 62.50 8 100
Median 1270 57.78 19.01 58.33 8 100
High 1260 98.14 10.91 100.00 8 100
No Data 1600 68.05 18.93 62.50 8 100

I(Individual found max)
Low 2870 0.98 0.15 1.00 0 1
Median 1270 0.30 0.46 0.00 0 1
High 1260 0.98 0.13 1.00 0 1
No Data 1600 0.94 0.24 1.00 0 1

I(Group found max)
Low 574 1.00 0.00 1.00 1 1
Median 254 0.46 0.50 0.00 0 1
High 252 1.00 0.00 1.00 1 1
No Data 320 0.99 0.08 1.00 0 1

Players Age
Low 2870 22.94 4.43 22.00 18 65
Median 1270 22.65 4.13 22.00 18 57
High 1260 22.50 4.12 21.00 18 59
No Data 1600 24.71 6.18 23.00 18 55

Female Players
Low 2870 0.65 0.48 1.00 0 1
Median 1270 0.66 0.47 1.00 0 1
High 1260 0.65 0.48 1.00 0 1
No Data 1600 0.71 0.45 1.00 0 1

Note: The table presents descriptive statistics on the 7000 participants in the 1400 rounds of the experiment.
Individual Payoff Share= individual round payoffs as a share of the maximum achievable; I(Individual
found max):0/1=1 if the location of the maximum was found by the participant; I(Group found max):0/1=1
if the location of the maximum was found by at least one participant in the round; Players Age= age of the
participant at the time of the experiment, in years; Female Players= share of participants who voluntarily
reported to identify as female.
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B Searching for the Genetic Roots of Human Diseases: Additional
Details

B.1 Scientific Background

Genetics is the branch of biology that studies genes, heredity, and variation in living organisms.
Genes are segments of DNA (deoxyribonucleic acid) that contain the information necessary for living
organisms’ development, functioning, and reproduction. In practice, each gene is a portion of DNA
that contains instructions for building one or more proteins, which are the fundamental constituents
of an organism. Genes often acquire mutations (or variants) in their sequence, most of which are
harmless. However, some mutations can lead the gene to alter its behavior and affect phenotypic traits,
sometimes with significant consequences and the emergence of severe health conditions. Discovering
which mutations are responsible for specific human diseases is thus a first-order priority since genes
associated with a condition can often be used as drug targets (Nelson et al., 2015). When a drug
molecule binds to its genetic target, it can modify its functioning, favorably affecting the outcome of a
disease. Therefore, knowing the genetic roots of diseases has important practical consequences in the
design of pharmaceutical drugs.

Diseases caused by single gene mutations are called Mendelian disorders, but such diseases are
typically rare. Most common human diseases have a polygenic nature, meaning they are not due to a
single genetic factor but rather by many genes. This class of diseases is called complex and genetic
mutations can increase the risk of presenting the condition even without being neither necessary nor
sufficient. Despite often clustering in families, polygenic disorders do not have a predictable inheritance
pattern because convoluted interactions between genes and environmental factors determine them. This
means that scientists need to search through the over 19,000 protein-coding genes to find the mutations
involved in each of the thousands of polygenic diseases (Tranchero, 2024).

Researchers have noted that even after the completion of the Human Genome Project, most scientists
continue to investigate the same small number of genes (Stoeger et al., 2018). Gates et al. (2021) report
that 1% of genes still receive 22% of all gene-related publications, helping to explain why current
treatments exploit only around 10% of the potentially druggable targets. This situation is probably
suboptimal since our chances of finding a cure for polygenic diseases would benefit from exploring a
larger number of genes (Edwards et al., 2011) and several understudied genes showing high promise
have been identified (Nguyen et al., 2017; Stoeger et al., 2018). Interestingly, despite much debate on
this extreme concentration of attention on a small number of theoretically well-known genes, we still
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lack an explanation for its drivers. Some scholars have attributed it to scientists’ preference for genes
with past data that permit the formulation of functional hypotheses (Haynes et al., 2018), akin to what
we characterized as a streetlight effect in this paper.

B.2 Data Description

DisGeNET. Our main data source is DisGeNET (v7.0), which is considered a complete repository
of scientific results linking human diseases to their genetic causes (Piñero et al., 2020). This database
aggregates all novel gene-disease associations studied by publications indexed in PubMed. This
information is harvested from specialized sources, including curated datasets such as ClinVar, UniProt,
and Orphanet.21 In addition, DisGeNET complements these data with information extracted from the
scientific literature indexed in PubMed using text-mining approaches. Our resulting data are at the
gene-disease-paper level, because for each association we observe both the publication that introduced
it and the list of all follow-up articles that investigated it.

Genes. Each gene in the database is identified by a unique identifier derived from Entrez Gene, a
gene-centric database curated by the National Center for Biotechnology Information (NCBI). Entrez
Gene provides tracked, unique gene identifiers that are integer and species-specific. In other words,
the integer assigned to a given human gene differs from that of the homolog gene in any other species.
DisGeNET compiles the Entrez Gene ID of each gene studied by papers in PubMed. We then limit our
sample to protein-coding genes given their prominence in the drug discovery process (Nelson et al.,
2015).

Diseases. Disease entries in DisGeNET are annotated using vocabulary from the Unified Medical
Language System (UMLS), a set of crosswalks that bring together many health and biomedical vocab-
ularies and standards to enable interoperability between databases. DisGeNET compiles the UMLS ID
of each disease studied by papers in PubMed. Since we focus on human diseases, we keep any entries
that map to the following UMLS semantic types: disease or syndrome; neoplastic process; acquired
abnormality; anatomical abnormality; congenital abnormality; and mental or behavioral dysfunction.
Using the UMLS ID, we also obtain disease relations from Kehoe and Torvik (2019), which contains
all pairwise relationships in the Medical Subject Headings vocabulary (MeSH) hierarchy.

Gene-Disease Pair Score. DisGeNET provides a stable score for each gene-disease association
it records. The score ranges from 0 to 1 and takes into account the number and type of sources
supporting the association. In practice, it is a sum of the number of publications studying the

21For the complete list of sources aggregated by DisGeNET, see https://www.disgenet.org/dbinfo.
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association, weighted by their level of curation and reliability. This synthetic metric reflects how well-
established is a particular association based on current knowledge and provides a parsimonious way
to assess the scientific value of any given gene-disease pair (Piñero et al., 2020; Tranchero, 2024). We
then consider any score below the 60th percentile as a low payoff, between the 60th and 90th percentile
as a medium payoff, and above the 90th percentile as a high payoff.22

Descriptive Statistics. We report the main descriptive statistics of our dataset in Table B.1. Panel
A summarizes the data at the disease level. Around 58% of the 4,369 diseases in our sample achieved
a breakthrough by 2019, which is the last year of our data. On average, it takes 22.3 years and the
exploration of 131 genes to find a high-value genetic target for a disease. Panel B summarizes the data
at the disease-year level. In any given year, the average disease receives 5.8 publications exploring its
genetic roots, usually entailing the exploration of 3.3 new genetic associations.

Table B.1: Descriptive statistics of the DisGeNET database.

Panel A: Disease level

Mean Median Sd Min Max N

Max Found: Low (0/1) 0.11 0.00 0.32 0 1 4369
Max Found: Medium (0/1) 0.31 0.00 0.46 0 1 4369
Max Found: High (0/1) 0.58 1.00 0.49 0 1 4369
Year Reached 10% Papers 2001 2001 5.55 1981 2017 4369
Max Gene Score During Exploration 84.79 92.00 24.27 0 100 4369
Year of First Low Score 1991 1991 7.08 1980 2016 1588
Year of First Medium Score 1995 1994 8.27 1980 2018 2208
Year of First High Score 1996 1995 8.24 1980 2019 3164
Delay (Years since 1980) 22.26 20.00 12.48 0 39 4369
Total Publications 229.84 72.00 526.05 23 5312 4369
Total Genes Explored 131.02 50.00 248.22 1 2555 4369
New Genes Per Paper (Post-Exploration) 0.69 0.68 0.44 0 6 4369

Panel B: Disease-year level

Mean Median Sd Min Max N

Maximum Gene Score In Year 44.06 1.00 45.81 0 100 174760
Yearly Count of Publications 5.75 1.00 24.07 0 836 174760
Yearly Count of Genes Explored 3.28 0.00 11.36 0 646 174760

Note: Panel A presents descriptive statistics on papers that introduce new gene-disease associations after
2005. Panel B presents descriptive statistics of the panel dataset at the disease-year level that we used for
the event-study analysis shown in Figure 7 and Appendix Figure C.6.

22As already noted in the main text, all our results are robust to the adoption of alternative threshold values (Appendix
Tables C.6 and C.7).
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B.3 Case Study: Gardner’s Syndrome and Tangier’s Disease

To exemplify our empirical application to genetic research, consider the following two genetic diseases.
Gardner syndrome (MeSH ID: D005736) is a rare disorder that falls under the umbrella of familial
adenomatous polyposis. It is characterized by the development of numerous polyps, particularly in
the colon and rectum. These polyps have the potential to become cancerous if left untreated. In
addition to gastrointestinal manifestations, individuals with Gardner syndrome may exhibit extra-
colonic features, such as the development of osteomas (benign bone tumors), particularly in the skull
and jaw. Importantly, Gardner syndrome is associated with mutations in the APC gene. This tumor
suppressor gene is responsible for regulating cell growth and preventing cells from dividing and
multiplying too quickly.

Tangier disease (MeSH ID: D013631) is a rare disorder characterized by a deficiency of high-density
lipoprotein cholesterol (HDL-C) in the blood. HDL-C is responsible for transporting cholesterol away
from tissues and back to the liver, playing a crucial role in cholesterol metabolism. Individuals with
Tangier disease typically experience enlarged and dysfunctional tonsils that exhibit a characteristic
orange discoloration. Additionally, patients may experience an increased risk of atherosclerosis
and cardiovascular disease due to the decreased ability to remove cholesterol from the bloodstream.
Tangier disease is an inherited genetic disease due to mutations in the ABCA1 gene. When this
gene is abnormal, a problem with its instructions makes the body unable to transport lipids onto
apolipoproteins, leading to a significant reduction in functional HDL-C particles.

Figure B.1 compares the history of genetic discoveries for both diseases. In the case of Gardner
syndrome (Panel A), early attempts did not find any promising genes, leading to a prolonged period of
exploration which culminated in the discovery of mutations in the APC gene (Nishisho et al., 1991).
Instead, Tangier disease (Panel B) saw the immediate discovery of a promising association with the
gene APOA1 in 1982. Such discovery stifled the exploration of new genes and led to resources being
poured on a target similar to a medium-value finding in our theoretical framework (APOA1 turned
out to have a DisGeNET score in the 60th percentile). The gene responsible for Tangier disease,
ABCA1, was only discovered in 1999 by Brooks-Wilson et al. (1999).23 This case study highlights
the unfolding of the streetlight effect in a real-world example. Somewhat paradoxically, the disease
for which earlier inroads were made is also the one that reached the breakthrough later. Instead, the
lack of early discoveries for Gardner syndrome led to more exploration, resulting in the responsible
gene being discovered 8 years earlier.

23Both these papers are very influential: Nishisho et al. (1991) and Brooks-Wilson et al. (1999) received over 2,400 and
2,100 cites in Google Scholar as of the year 2023, respectively.
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Panel A: Gardner’s syndrome

Panel B: Tangier’s disease

Figure B.1: Two case examples in search for the genetic origins of diseases.

Note: The solid black line represents the cumulative number of gene candidates discovered for the disease up to that year.
The dashed line represents the maximum DisGeNET score observed for the genes associated with that disease up to that
year. Panel A presents the data for Gardner’s syndrome, and the vertical line indicates the year when the association with
the APC gene was discovered (DisGeNET score in the 99th percentile). Panel B presents the data for Tangier’s disease,
and the vertical line indicates the year when the association with the ABCA1 gene was discovered (DisGeNET score in
the 100th percentile).
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C Additional Figures and Tables

(i) Average round payoffs by block (ii) Likelihood of individual breakthrough by block

(iii) Likelihood of group breakthrough by block

Figure C.1: Robustness of the main results over time.

Note: The figures depict the impact of data on group outcomes as the experimental session progresses. Figure (i) shows
for each block of 5 rounds the average group payoffs divided by experimental condition. Payoffs are reported as a share of
the maximum available in each round. Figure (ii) shows the share of participants who found the location of the maximum
divided by experimental condition for each block. Figure (iii) shows the share of rounds for each block where the maximum
was found divided by experimental condition.
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Panel A: Payoffs

(i) Payoffs in period 1 (ii) Payoffs in period 2

Panel B: Breakthroughs

(iii) Likelihood of breakthrough in period 1 (iv) Likelihood of breakthrough in period 2

Figure C.2: Outcomes over time and by period of the game.

Note: Panel A reports the experimental results on the period payoffs computed as a share of the maximum possible in
each period. Figure (i) shows the average collective payoffs achieved in period 1 by experimental condition and over time.
Figure (ii) shows the average collective payoffs achieved in period 2 by experimental condition and over time. Panel B
reports the experimental results on the likelihood of an individual breakthrough in each round. Figure (iii) shows the share
of participants that found the maximum in period 1 by experimental condition and over time. Figure (iv) shows the share
of participants that found the maximum in period 2 by experimental condition and over time.
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Figure C.3: Average level of exploration over time by experimental condition.

Note: The figure shows for each block of five rounds the impact of data on exploration choices divided by experimental
condition. The number of mountains explored is reported as a share of the unknown mountains in each round to account
for the fact that rounds without data have one more unknown option.
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(i) Average search effort for diseases (ii) Average exploration of new genes for diseases

Figure C.4: Impact of early discoveries on search effort and exploration for the genetic origins of
diseases.

Note: For each human disease, we compute the highest DisGeNET score identified in genetic publications linked to the
disease during the early search phase (defined as the first 10% of publications on the disease). We classify maximum
scores below the 60th percentile as a “low” gene discovery, scores between the 60th and 90th percentile as a “medium”
gene discovery, and scores above the 90th percentile as a “high” (or breakthrough) gene discovery. Panel (i) displays the
mean number of publications about the genetic roots of a disease following the early search window. Panel (ii) displays the
average number of new genes explored per paper about a disease following the early search window. Error bars represent
95% confidence intervals. See text for more details.
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(i) CDFs of round payoffs in the experiment (ii) CDFs of delay to breakthrough in genetics

Figure C.5: Suggestive comparison between experimental findings and patterns of genetic discovery.

Note: Panel (i) plots the cumulative density function of round payoffs by experimental condition. Panel (ii) displays the
CDF of the number of years it takes to discover the first “high” score after 1980 (the first sample year) for each of the three
groups. For each human disease, we compute the highest DisGeNET score identified in genetic publications linked to
the disease during the early search phase (defined as the first 10% of publications on the disease). We classify maximum
scores below the 60th percentile as a “low” gene discovery, scores between the 60th and 90th percentile as a “medium” gene
discovery, and scores above the 90th percentile as a “high” (or breakthrough) gene discovery.
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Panel A: Discovery of a low-value genetic association

Panel B: Discovery of a high-value genetic association

Figure C.6: Dynamic effects of the discovery of a low or high-value genetic association on the
exploration of new genes.

Note: For each human disease, we compute the highest DisGeNET score identified in genetic publications linked to the
disease during the early search phase (defined as the first 10% of publications on the disease). We classify maximum scores
below the 60th percentile as a “low” gene discovery and scores above the 90th percentile as a “high” (or breakthrough)
gene discovery. Panel (i) plots OLS estimates and 95% confidence intervals from an event study design that explores
how genetic exploration in each disease evolves in the years before and after the discovery of the first low-value genetic
association. Panel (ii) plots OLS estimates and 95% confidence intervals from an event study design that explores how
genetic exploration in each disease evolves in the years before and after the discovery of the first high-value genetic
association. Standard errors are clustered at the disease class level. See text for more details.
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Panel A: Keeping sibling and parent diseases

Panel B: Keeping only sibling diseases

Figure C.7: Considering only diseases genetically related to a disease with a breakthrough.

Note: This figure replicates our baseline event study but only considers diseases in the sample that are genetically related
to a disease with a known breakthrough (genetic discoveries with scores above the 90th percentile of DisGeNET score).
We obtain genetic relations from the Medical Subject Headings vocabulary (MeSH). In Panel A, we keep both sibling
diseases (i.e., diseases sharing the same parent MeSH code) and parent diseases (i.e., diseases one level up in the MeSH
tree) of diseases with a breakthrough. In Panel B we keep only sibling diseases (i.e., diseases sharing the same parent
MeSH code) of diseases with a breakthrough. This figure plots OLS estimates and 95% confidence intervals from an event
study design that explores how genetic exploration in each disease evolves in the years before and after the discovery of the
first medium-value genetic association. Standard errors are clustered at the disease class level. See text for more details.
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Table C.1: Effects of revealing a medium-value project for different parameter values.

Exploration with parameter set 1 Exploration with parameter set 2

(1) (2)
Round Round

High -75.318∗∗∗ -75.246∗∗∗

(2.968) (2.622)

Low 6.473∗ 4.433∗∗

(2.370) (1.469)

Medium -38.886∗∗∗ -26.168∗∗∗

(4.028) (3.123)

Constant 86.290∗∗∗ 79.152∗∗∗

(3.035) (2.067)

Round Order FE No No
Block order FE Yes Yes
Payoff structure FE Yes Yes
Observations 800 600
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Standard errors clustered at the session level in parentheses
Estimates from OLS models. The sample in both columns is at the group-round level. Column 1 shows the
results for rounds where the parameters used satisfy Assumption 1 and the condition in equation (5). Column
2 shows the results for rounds where the parameters used satisfy Assumption 1 and the condition in equation
(4). The excluded category captured by the constant is the condition without data.
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Table C.2: Risk aversion and decision not to choose the known outcome in period 1 when medium is
revealed.

I(Exploration if M is revealed)

Risk aversion -0.003
(0.018)

Top quartile risk aversion 0.000
(0.034)

Bottom quartile risk aversion -0.052
(0.030)

Constant 0.329∗∗∗ 0.328∗∗∗ 0.343∗∗∗

(0.054) (0.051) (0.059)

Round Order FE Yes Yes Yes
Block order FE Yes Yes Yes
Payoff structure FE Yes Yes Yes
Observations 1270 1270 1270
∗ ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Standard errors clustered at the
session level in parentheses
Round-participant level observations, estimates from OLS models. The sam-
ple includes all the individual observations for the 254 rounds where the
medium value was revealed. I(Exploration if M is revealed):0/1=1 if the
player did not choose the medium value in period 1. Risk aversion = stan-
dardized measure of individual risk aversion (Holt and Laury, 2002); Top
quartile risk aversion:0/1=1 if the participant is in the top quartile of the risk
aversion distribution in our sample; Bottom quartile risk aversion:0/1=1 if the
participant is in the bottom quartile of the risk aversion distribution in our
sample.
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Table C.3: Correlates of the decision not to choose the known outcome in period 1 when medium is
revealed.

I(Exploration if M is revealed)

English native 0.012
(0.038)

Wrong quizzes 0.043∗

(0.017)

Round number -0.012
(0.008)

Order of choice 0.013
(0.011)

Constant 0.322∗∗∗ 0.324∗∗∗ 0.369∗∗∗ 0.316∗∗∗

(0.067) (0.054) (0.055) (0.056)

Round Order FE Yes Yes Yes No
Block order FE Yes Yes Yes Yes
Payoff structure FE Yes Yes Yes Yes
Observations 1270 1270 1270 1270
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Standard errors clustered at the session
level in parentheses
Round-player level observations, estimates from OLS models. The sample
includes all the individual observations for the 254 rounds where the medium
value was revealed. I(Exploration if M is revealed):0/1=1 if the player did not
choose the medium value in period 1. English native:0/1=1 if the participant
is a native English speaker based on her reported nationality; Wrong quizzes =
standardized number of wrong answers to the initial comprehension test; Round
number = progressive order in which the rounds were played in the experimental
session; Order of choice = random sequential order in which the player chose in
that round.
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Table C.4: Sensitivity to definition of marginally explored diseases

Panel A: Delay in breakthroughs

Delay (Years From 1980)

>0 Pubs >10 Pubs >20 Pubs >30 Pubs

(1) (2) (3) (4)

Max Found: Medium 3.265∗∗∗ 2.768∗∗∗ 1.691∗∗∗ 1.362∗

(0.366) (0.392) (0.452) (0.602)

Max Found: High -13.305∗∗∗ -14.671∗∗∗ -16.301∗∗∗ -16.931∗∗∗

(0.546) (0.578) (0.625) (0.723)

Final Exploration Year FE Yes Yes Yes Yes
Disease Class FE Yes Yes Yes Yes
Count of Publications Yes Yes Yes Yes
N 14208 5529 3828 2965

Panel B: Diversity of follow-on research

New Genes Per Paper

>0 Pubs >10 Pubs >20 Pubs >30 Pubs

(1) (2) (3) (4)

Max Found: Medium -0.127∗∗∗ -0.129∗∗∗ -0.125∗∗∗ -0.101∗∗∗

(0.025) (0.021) (0.021) (0.026)

Max Found: High -0.062 -0.125∗∗ -0.151∗∗∗ -0.136∗∗∗

(0.042) (0.042) (0.035) (0.039)

Final Exploration Year FE Yes Yes Yes Yes
Disease Class FE Yes Yes Yes Yes
Count of Publications Yes Yes Yes Yes
N 11345 5529 3828 2965
* p < 0.05, ** p < 0.01, *** p < 0.001. Standard errors clustered at the disease class level in parentheses.
This table replicates our baseline specification (which removes diseases with less than 25 publications over
the sample window) and shows robustness when we keep only diseases with nonzero publications (1),
more than 10 publications (2), more than 20 publications (3), and more than 30 publications (4). For each
human disease, we compute the highest DisGeNET score identified in the genetic publications linked to the
disease during the early search phase (defined as the first 10% of publications on the disease). We classify
maximum scores below the 60th percentile as a “low” gene discovery, scores between the 60th and 90th

percentile as a “medium” gene discovery, and scores above the 90th percentile as a “high” (or breakthrough)
gene discovery. Panel A shows the impact of early discoveries on the delay in discovering a breakthrough
for a given disease, defined as years elapsed from 1980 (the first year of our panel). Panel B shows the
impact of early discoveries on the number of new genes explored for a given disease, normalized by the
total number of publications in the years following the exploration window. In both cases, diseases that
found only low-value genes during the early search period constitute the excluded category. See text for
more details.
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Table C.5: Sensitivity to the inclusion of outlier diseases.

Panel A: Delay in breakthroughs

Delay (Years From 1980)

(1) (2) (3) (4)

Max Found: Medium 1.959∗∗∗ 1.701∗∗∗ 1.350∗∗ 1.611∗∗

(0.501) (0.457) (0.482) (0.529)

Max Found: High -19.043∗∗∗ -18.636∗∗∗ -18.733∗∗∗ -16.494∗∗∗

(0.647) (0.627) (0.694) (0.726)

Final Exploration Year FE No Yes Yes Yes
Disease Class FE No No Yes Yes
Count of Publications No No No Yes
N 4010 4009 3779 3337

Panel B: Diversity of follow-on research

New Genes Per Paper

(1) (2) (3) (4)

Max Found: Medium -0.077∗∗ -0.089∗∗ -0.142∗∗∗ -0.115∗∗∗

(0.029) (0.028) (0.024) (0.025)

Max Found: High -0.311∗∗∗ -0.316∗∗∗ -0.239∗∗∗ -0.150∗∗∗

(0.028) (0.028) (0.029) (0.035)

Final Exploration Year FE No Yes Yes Yes
Disease Class FE No No Yes Yes
Count of Publications No No No Yes
N 4010 4009 3779 3337

* p < 0.05, ** p < 0.01, *** p < 0.001. Standard errors clustered at the disease class level in parentheses.
This table replicates our baseline specification including also outlier diseases (i.e., those in the top 1% by
publications over the sample period). For each human disease, we compute the highest DisGeNET score
identified in the genetic publications linked to the disease during the early search phase (defined as the first
10% of publications on the disease). We classify maximum scores below the 60th percentile as a “low” gene
discovery, scores between the 60th and 90th percentile as a “medium” gene discovery, and scores above the
90th percentile as a “high” (or breakthrough) gene discovery. Panel A shows the impact of early discoveries
on the delay in discovering a breakthrough for a given disease, defined as years elapsed from 1980 (the first
year of our panel). Panel B shows the impact of early discoveries on the number of new genes explored
for a given disease, normalized by the total number of publications in the years following the exploration
window. In both cases, diseases that found only low-value genes during the early search period constitute
the excluded category. See text for more details.
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Table C.6: Alternative definitions of low and medium-value genes.

Panel A: Delay in breakthroughs

Delay (Years From 1980)

50th P 60th P 70th P 80th P

(1) (2) (3) (4)

Max Found: Medium 1.924∗∗ 1.611∗∗ 1.611∗∗ 1.568∗∗

(0.685) (0.529) (0.529) (0.557)

Max Found: High -16.044∗∗∗ -16.494∗∗∗ -16.494∗∗∗ -16.858∗∗∗

(0.899) (0.726) (0.726) (0.626)

Final Exploration Year FE Yes Yes Yes Yes
Disease Class FE Yes Yes Yes Yes
Count of Publications Yes Yes Yes Yes
N 3337 3337 3337 3337

Panel B: Diversity of follow-on research

New Genes Per Paper

50th P 60th P 70th P 80th P

(1) (2) (3) (4)

Max Found: Medium -0.055 -0.115∗∗∗ -0.115∗∗∗ -0.183∗∗∗

(0.031) (0.025) (0.025) (0.025)

Max Found: High -0.113∗∗∗ -0.150∗∗∗ -0.150∗∗∗ -0.159∗∗∗

(0.030) (0.035) (0.035) (0.032)

Final Exploration Year FE Yes Yes Yes Yes
Disease Class FE Yes Yes Yes Yes
Count of Publications Yes Yes Yes Yes
N 3337 3337 3337 3337

* p < 0.05, ** p < 0.01, *** p < 0.001. Standard errors clustered at the disease class level in parentheses.
This table replicates our baseline specification but varies the cutoff between a low and medium-value genetic
association. In our baseline, we adopt the 60th percentile to separate medium and high scores. We test the
50th percentile (1), the baseline (2), the 70th percentile (3), and the 80th percentile (4) instead. For each
regression, we hold the cutoff between a medum gene score and high gene score fixed at the 90th percentile
(our baseline). Panel A shows the impact of early discoveries on the delay in discovering a breakthrough
for a given disease, defined as years elapsed from 1980 (the first year of our panel). Panel B shows the
impact of early discoveries on the number of new genes explored for a given disease, normalized by the
total number of publications in the years following the exploration window. In both cases, diseases that
found only low-value genes during the early search period constitute the excluded category. See text for
more details.
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Table C.7: Alternative definitions of medium and high-value genes.

Panel A: Delay in breakthroughs

Delay (Years From 1980)

90th P 95th P 98th P 99th P

(1) (2) (3) (4)

Max Found: Medium 1.611∗∗ 0.371 0.494 0.355
(0.529) (0.529) (0.541) (0.512)

Max Found: High -16.494∗∗∗ -17.936∗∗∗ -18.299∗∗∗ -18.954∗∗∗

(0.726) (0.793) (0.803) (0.821)

Final Exploration Year FE Yes Yes Yes Yes
Disease Class FE Yes Yes Yes Yes
Count of Publications Yes Yes Yes Yes
N 3337 3337 3337 3337

Panel B: Diversity of follow-on research

New Genes Per Paper

90th P 95th P 98th P 99th P

(1) (2) (3) (4)

Max Found: Medium -0.115∗∗∗ -0.083∗∗∗ -0.071∗∗ -0.072∗∗

(0.025) (0.024) (0.024) (0.025)

Max Found: High -0.150∗∗∗ -0.220∗∗∗ -0.249∗∗∗ -0.275∗∗∗

(0.035) (0.039) (0.040) (0.039)

Final Exploration Year FE Yes Yes Yes Yes
Disease Class FE Yes Yes Yes Yes
Count of Publications Yes Yes Yes Yes
N 3337 3337 3337 3337

* p < 0.05, ** p < 0.01, *** p < 0.001. Standard errors clustered at the disease class level in parentheses.
This table replicates our baseline specification but varies the cutoff between a medium and high-value
genetic association. In our baseline, we adopt the 90th percentile to separate medium and high scores. We
test the baseline (1), the 95th percentile (2), the 98th percentile (3), and the 99th percentile (4) instead. For
each regression, we hold the cutoff between a low gene score and medium gene score fixed at the 60th

percentile (our baseline). Panel A shows the impact of early discoveries on the delay in discovering a
breakthrough for a given disease, defined as years elapsed from 1980 (the first year of our panel). Panel B
shows the impact of early discoveries on the number of new genes explored for a given disease, normalized
by the total number of publications in the years following the exploration window. In both cases, diseases
that found only low-value genes during the early search period constitute the excluded category. See text
for more details.
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Table C.8: Different thresholds of publication share to define the early search period.

Delay (Years From 1980)

5% 10% 15% 20%

(1) (2) (3) (4)

Max Found: Medium 2.598∗∗∗ 1.611∗∗ 0.661 1.008
(0.436) (0.529) (0.550) (0.548)

Max Found: High -13.657∗∗∗ -16.494∗∗∗ -18.465∗∗∗ -18.532∗∗∗

(0.680) (0.726) (0.686) (0.688)

Final Exploration Year FE Yes Yes Yes Yes
Disease Class FE Yes Yes Yes Yes
Count of Publications Yes Yes Yes Yes
N 3325 3337 3369 3391
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Standard errors clustered at the disease class level in parentheses.
This table replicates our baseline specification using alternative definitions of “early search period”. We
test varying thresholds from 5% (1) up to 20% (4) in increments of 5%. This table replicates our baseline
specification using alternative windows to define the period of early search. We report the results employing
fixed windows, including all years before 1990 (1), before 1995 (2), before 2000 (3), and before 2005 (4).
For each human disease, we compute the highest DisGeNET score identified in the genetic publications
linked to the disease during the early search phase. We classify maximum scores below the 60th percentile
as a “low” gene discovery, scores between the 60th and 90th percentile as a “medium” gene discovery, and
scores above the 90th percentile as a “high” (or breakthrough) gene discovery. See text for more details.
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Table C.9: Fixed windows of years to define the early search period.

Delay (Years From 1980)

<1990 <1995 <2000 <2005

(1) (2) (3) (4)

Max Found: Medium 1.939∗∗ 1.811∗∗ 2.531∗∗∗ 1.560∗∗

(0.724) (0.556) (0.544) (0.521)

Max Found: High -18.706∗∗∗ -17.826∗∗∗ -18.596∗∗∗ -20.288∗∗∗

(0.958) (0.778) (0.653) (0.581)

Final Exploration Year FE Yes Yes Yes Yes
Disease Class FE Yes Yes Yes Yes
Count of Publications Yes Yes Yes Yes
N 1192 2213 2923 3297
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Standard errors clustered at the disease class level in parentheses.
This table replicates our baseline specification using alternative windows to define the period of early
search. We report the results employing fixed windows, including all years before 1990 (1), before 1995
(2), before 2000 (3), and before 2005 (4). For each human disease, we compute the highest DisGeNET
score identified in the genetic publications linked to the disease during the early search phase. We classify
maximum scores below the 60th percentile as a “low” gene discovery, scores between the 60th and 90th

percentile as a “medium” gene discovery, and scores above the 90th percentile as a “high” (or breakthrough)
gene discovery. See text for more details.
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Table C.10: Alternative windows to examine follow-on explorative research.

New Genes Per Paper

All Years 5 Years 10 Years Until H

(1) (2) (3) (4)

Max Found: Medium -0.115∗∗∗ -0.098∗ -0.105∗∗ -0.095∗

(0.025) (0.039) (0.033) (0.040)

Max Found: High -0.150∗∗∗ -0.183∗∗∗ -0.179∗∗∗

(0.035) (0.044) (0.041)

Disease Class FE Yes Yes Yes Yes
Final Exploration Year FE Yes Yes Yes Yes
Count of Publications Yes Yes Yes Yes
N 3337 3305 3332 1077

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Standard errors clustered at the disease class level in parentheses.
This table replicates our baseline specification using alternative windows to evaluate the evolution of
explorative research. We report the results from the baseline (1), the 5 subsequent years after 10% of
publications is reached (2), the 10 subsequent years after 10% of publications is reached (3), and until
the first high gene score is found (4). For each human disease, we compute the highest DisGeNET score
identified in the genetic publications linked to the disease during the early search phase (defined as the first
10% of publications on the disease). We classify maximum scores below the 60th percentile as a “low” gene
discovery, scores between the 60th and 90th percentile as a “medium” gene discovery, and scores above the
90th percentile as a “high” (or breakthrough) gene discovery. See text for more details.
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Table C.11: Alternative measures of delays in breakthroughs.

Delay (Years From 10% Publications)

(1) (2) (3)

Max Found: Medium 4.063∗∗∗ 3.182∗∗ 3.302∗∗

(1.003) (0.994) (0.994)

Max Found: High -22.939∗∗∗ -22.216∗∗∗ -21.194∗∗∗

(1.118) (1.250) (1.242)

Disease Class FE No Yes Yes
Count of Publications No No Yes
N 3968 3738 3338

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Standard errors clustered at the disease class level in parentheses.
This table replicates our baseline specification using an alternative measure of delay in breakthrough
discovery, here defined as years elapsed from the first 10% of publications on the disease. For each human
disease, we compute the highest DisGeNET score identified in the genetic publications linked to the disease
during the early search phase (defined as the first 10% of publications on the disease). We classify maximum
scores below the 60th percentile as a “low” gene discovery, scores between the 60th and 90th percentile as a
“medium” gene discovery, and scores above the 90th percentile as a “high” (or breakthrough) gene discovery.
See text for more details.
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Table C.12: Difference-in-difference estimates of the effect of early discoveries on subsequent genetic
exploration.

New Genes Paper Paper (Yearly)

Low GDA Medium GDA High GDA

(1) (2) (3) (4) (5) (6)

Post (Low) 0.252∗∗∗ 0.225∗∗∗

(0.039) (0.039)

Post (Med) -0.139∗∗∗ -0.141∗∗∗

(0.028) (0.029)

Post (High) -0.177∗∗∗ -0.153∗∗∗

(0.019) (0.019)

Disease FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Count of Publications No Yes No Yes No Yes
N 88134 87997 88134 87997 88134 87997

* p < 0.05, ** p < 0.01, *** p < 0.001. Standard errors clustered at the disease class level in parentheses.
For each human disease, we compute the highest DisGeNET score identified in the genetic publications
linked to the disease during the early search phase (defined as the first 10% of publications on the disease).
We classify maximum scores below the 60th percentile as a “low” gene discovery, scores between the
60th and 90th percentile as a “medium” gene discovery, and scores above the 90th percentile as a “high” (or
breakthrough) gene discovery. This table reports OLS estimates from differences-in-differences that explore
how genetic exploration in each disease evolves in the years before and after the discovery of the first low,
medium, and high-value genetic association. Standard errors are clustered at the disease class level. See
text for more details.
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Table C.13: Considering only diseases that have a breakthrough by 2019.

Panel A: Delay in breakthroughs

Delay (Years From 1980)

(1) (2) (3) (4)

Max Found: Medium 0.918 0.759 0.641 2.199∗∗∗

(0.594) (0.507) (0.560) (0.473)

Max Found: High -11.591∗∗∗ -11.800∗∗∗ -11.832∗∗∗ -8.531∗∗∗

(0.536) (0.521) (0.591) (0.441)

Final Exploration Year FE No Yes Yes Yes
Disease Class FE No No Yes Yes
Count of Publications No No No Yes
N 3053 3051 2861 2477

Panel B: Diversity of follow-on research

New Genes Per Paper

(1) (2) (3) (4)

Max Found: Medium 0.005 0.004 -0.071 -0.067
(0.044) (0.044) (0.043) (0.042)

Max Found: High -0.210∗∗∗ -0.220∗∗∗ -0.181∗∗∗ -0.113∗∗

(0.037) (0.038) (0.031) (0.042)

Final Exploration Year FE No Yes Yes Yes
Disease Class FE No No Yes Yes
Count of Publications No No No Yes
N 3053 3051 2861 2477

* p < 0.05, ** p < 0.01, *** p < 0.001. Standard errors clustered at the disease class level in parentheses.
This table replicates our baseline specification removing any diseases without a breakthrough (i.e. a gene
with a “high” score) during the sample period. For each human disease, we compute the highest DisGeNET
score identified in the genetic publications linked to the disease during the early search phase (defined as
the first 10% of publications on the disease). We classify maximum scores below the 60th percentile as a
“low” gene discovery, scores between the 60th and 90th percentile as a “medium” gene discovery, and scores
above the 90th percentile as a “high” (or breakthrough) gene discovery. Panel A shows the impact of early
discoveries on the delay in discovering a breakthrough for a given disease, defined as years elapsed from
1980 (the first year of our panel). Panel B shows the impact of early discoveries on the number of new
genes explored for a given disease, normalized by the total number of publications in the years following
the exploration window. In both cases, diseases that found only low-value genes during the early search
period constitute the excluded category. See text for more details.
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