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This paper studies the falsifiability and identification of Quantal Response Equilibrium (QRE) 
when each player’s utility and error distribution are relaxed to be unknown non-parametric 
functions. Using the variation of players’ choices across a series of games, we first show that 
both the utility function and the distribution of errors are non-parametrically over-identified. 
This over-identification result further suggests a straightforward testing procedure for QRE which 
achieves the desired type-1 error and maintains a small type-2 error. To apply this methodology, 
we conduct an experimental study of the matching pennies game. Our non-parametric estimates 
strongly reject the conventional Logit choice probability. Moreover, when the utility and the error 
distribution are sufficiently flexible and heterogeneous, the quantal response hypothesis cannot 
be rejected for 70% of participants. However, strong assumptions such as linear utility, logistically 
distributed errors, and homogeneity lead to substantially higher rejection rates.

1. Introduction

In many strategic settings, choice behavior systematically deviates from the canonical solution concept of Nash Equilibrium (NE). 
These deviations have been documented using both experimental data of individual decision-makers (Goeree and Holt, 2001) and 
field data of firms and managers (Goldfarb and Xiao, 2011; Aguirregabiria and Jeon, 2020). To address some of these failures, Quantal 
Response Equilibrium (QRE; McKelvey and Palfrey, 1995; Goeree et al., 2005) has been proposed as an alternative equilibrium concept. 
It has successfully explained many deviations from NE and has become an important benchmark in game theory (Goeree et al., 2020).1

This paper focuses on structural QRE (McKelvey and Palfrey, 1995) which extends the random utility framework to strategic 
settings. In particular, the expected utility of each action is randomly perturbed by an additively separable “error” that can be 
interpreted as either a noisy decision process or the private information of each player. A structural QRE is then defined as a fixed 
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point in the space of the choice probabilities implied by this error. By incorporating errors into strategic settings, yet preserving the 
concept of equilibrium, QRE makes predictions about behaviors in games that reduce to NE as noise vanishes.

In a structural QRE, each player’s behavior (choice probability) is completely determined by two model primitives: (i) the utility 
function and (ii) the error distribution. Empirical applications of QRE typically impose strong, restrictive, and potentially mis-specified 
assumptions on these two primitives. For instance, the analyst usually assumes that each player’s utility function is known, identical, 
and given by monetary payoffs in the experiment (henceforth, the known utility assumption). This assumption restricts all participants 
to have homogeneous risk-neutral preferences. It is problematic since heterogeneous behavior consistent with deviations from risk-

neutrality (or at least, a linear aggregation of monetary payoffs) is typically observed in laboratory settings, as identified by Goeree 
et al. (2003), Harrison and Cox (2008), and Oprea (forthcoming), among many others. Further, most applications also assume that 
each player’s random errors follow a common distribution and the functional form of this distribution is known by the analyst, e.g., 
the Logit choice rule. This distributional assumption is considered mainly due to its statistical convenience and it imposes strong shape 
restrictions that could be mis-specified, especially when the analyst fits aggregate data that consists of heterogeneous participants 
(Golman, 2011).2

This paper addresses the identification and testing of structural QRE when relaxing the above restrictions on model primitives. 
In particular, we specify each player’s utility to be a non-parametric function of their monetary payoffs received in the experiment. 
In addition, within each player, the random errors associated with each action are jointly distributed according to a non-parametric

function. Crucially, this distribution function allows for general error structures, where the random errors of each action may fol-

low heterogeneous marginal distributions and exhibit arbitrary correlations with the errors of other actions.3 Given this empirical 
framework, we focus on experimental settings where the analyst can design a series of games with different monetary rewards that 
correspond to different exogenous treatments in the experiment. Each game could be played either once or with multiple repetitions. 
Under an invariance assumption that the utility function and the distribution function remain unchanged across games, we show 
that each player’s error distribution is non-parametrically over-identified when there are sufficient and independent variations of each 
player’s monetary rewards.

The above non-parametric over-identification result has four important implications. First, to derive the QRE choice probabilities, 
an analyst does not have to rely on strong and potentially mis-specified distributional assumptions. Instead, the analyst can simply 
estimate the error distribution and this empirical estimate is robust to any preferences over own monetary rewards within the expected 
utility framework. Notably, a non-parametric specification, if performed at the population level, can be interpreted as a heterogeneous

QRE that allows the error distribution to vary across participants (Golman, 2011). Such a proposal has not previously been applied 
to data due to a lack of identification results. The results reported here therefore provide a means to fit heterogeneous QRE at the 
population level. Second, since the model primitives are over-identified, it implies that QRE can be tested employing a standard 
over-identification test. This test addresses the non-falsifiability of QRE as raised by Haile et al. (2008), who show that when the 
random errors are not i.i.d. across players’ actions and are non-parametrically specified, QRE can rationalize any vector of choice 
probabilities and is therefore non-falsifiable within a game. In contrast, we show that under the invariance assumption, the variations 
of players’ choices across games can provide enough identification power to test QRE.4 Third, most empirical applications of QRE 
assume that the mean or median of the error distribution is zero. We show that this restriction is not necessary for identification 
in most experimental datasets. This result allows the analyst to identify the existence of systematic errors displayed by participants. 
Fourth, once the distribution function has been identified, our empirical framework then reduces to a semi-parametric model where 
the utility function remains non-parametric but the error distribution is known by the analyst. This semi-parametric model has been 
studied by Bajari et al. (2010) and Aguirregabiria and Xie (2021). Based on their results, non-parametric identification of each player’s 
utility function is indeed feasible.

To estimate and test QRE in practice, we exploit non-parametric Maximum Likelihood estimation by the method of sieves. We 
illustrate the finite sample property of this method in a Monte Carlo experiment to highlight the importance of relaxing both the 
known utility and the distributional assumptions. When either of these assumptions is mis-specified and behavior is generated by 
QRE, we find that the test of QRE is substantially over-rejected in typical sample sizes of laboratory studies. In particular, the type-

1 error rates may exceed 90% on a purported 5% test. In contrast, under a fully non-parametric specification, our test achieves 
the ideal type-1 error rates and therefore guards against over-rejection of QRE. Moreover, the estimates of both the utility and the 
error distribution closely match their true values. Finally, we also simulate the data under alternative behavioral models such as the 
canonical Level-𝑘 model. In this scenario, our test has the power to reject the incorrect null hypothesis of QRE with a rejection rate 
close to 100%.

To assess the empirical relevance of our results, we conduct a laboratory experiment of the matching pennies game. We find 
that QRE under a fully non-parametric specification fits the data substantially better than existing applications, both in-sample and 
out-of-sample. We also observe a substantial reduction in rejections of quantal response behavior, with rejection rates dropping from 
70% to 30% of participants. The estimation results also strongly reject the usual Logit choice probability. In comparison to a logistic 
distribution, our estimated error distribution exhibits a higher probability of both small and extremely large errors, coupled with a 
smaller probability of errors of moderate size. Moreover, the estimated mean of the errors is significantly positive, suggesting that 

2 In particular, suppose that all individuals’ errors follow the extreme type-1 distribution (i.e., Logit) but differ in their sensitivity parameters. Golman (2011) shows 
that the aggregate behavior could be described by a representative player who will not behave according to the Logit formula. The actual error distribution of this 
representative player depends on the distribution of the sensitivity parameters.

3 Of course, the correlation structure has to be permitted by a valid joint distribution function.
2

4 This idea of exploiting cross-game variation was first conjectured by Haile et al. (2008).
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participants in our experiment display a systematic error: they tend to mistakenly choose the action presented at the top of the screen 
more frequently. Finally, under the conventional Logit specification, the known utility assumption is highly rejected. In contrast, with 
a non-parametric error distribution, a non-linear utility function performs quantitatively similar to a linear utility function (albeit 
with possible curvature for higher payoffs). All these results highlight the importance of flexible specifications of model primitives 
and the non-parametric identification results derived in this paper are particularly useful.

This paper relates to two studies that exploit cross-game variations to test QRE. Melo et al. (2019) consider a non-parametric 
distribution function but impose the known utility assumption. Aguirregabiria and Xie (2021) specify a non-parametric utility function 
but maintain the distributional assumption. This paper jointly relaxes both assumptions and derives a test of QRE. Moreover, we obtain 
non-parametric identification results of both model primitives. In contrast, Melo et al. (2019) do not study the identification problem 
and Aguirregabiria and Xie (2021) only report a semi-parametric result.5

In contrast to testing structural QRE through cross-game variation, Goeree et al. (2005) propose a reduced-form approach known 
as regular QRE. This approach avoids modeling random errors and directly defines a reduced-form quantal response function that 
maps from expected utilities to choice probabilities. By imposing four specific conditions on this function, Goeree et al. (2005) derive 
testable implications of regular QRE within repetitions of the same game.6 Notably, these testable restrictions rely on the known utility 
assumption, which we relax in this paper. Moreover, when the random errors are i.i.d. across players’ actions and satisfy some other 
weak conditions, structural QRE is nested in regular QRE. However, since we relax the i.i.d. restriction and allow for general error 
structures, regular QRE does not nest the class of structural QRE considered in this paper, and vice versa.

Structural QRE shares an identical mathematical structure with Bayesian Nash Equilibrium (BNE) in incomplete information games 
where private information is independent across players. The identification of the latter framework, mainly using field data, has been 
extensively studied. In particular, Bajari et al. (2010) consider a non-parametric utility function but maintain the distributional 
assumption. Liu et al. (2017) focus on binary choice games and further relax the distributional assumption, achieving the fully 
non-parametric identification for both model primitives. In a recent paper, Xie (2022) extends these fully non-parametric results 
to multinomial choice games and attains identification even when players occasionally deviate from equilibrium. He also derives a 
testable implication of BNE. Our results advance these results in four directions. First, Xie (2022) considers a restrictive class of error 
distributions. In contrast, our experimental setting allows for general error structures, where the errors of each action can follow 
heterogeneous marginal distributions and exhibit arbitrary correlations across actions. Second, the testable implication in Xie (2022)

relies on an “equal choice probabilities” condition which is extremely difficult to construct in empirical applications, and thus has not 
been applied to an actual dataset. Conversely, our results do not require constructing this condition explicitly and are straightforward 
to implement in practice. We illustrate this using a dataset from a laboratory experiment of the matching pennies game. Third, 
our test includes not only all the testable restrictions derived by Xie (2022), but our experimental setting allows us to derive many 
other additional restrictions imposed by QRE. As such, our test has higher statistical power.7 Finally, Xie’s testable implication is a 
restriction on players’ choice probabilities, which are multivariate functions of all players’ monetary payoffs. In contrast, our test is 
a restriction on model primitives which are single-variable functions. This dimension reduction ensures precise estimation, especially 
under a fully non-parametric specification. It consequently improves the finite sample performance of the test of QRE.

There are several plausible explanations for why QRE might not be satisfied in an experimental dataset, such as departures from 
expected-utility, other-regarding preference, and incorrect / biased beliefs about the other player’s behavior. Xie (2022) attributes 
non-QRE behavior solely to biased beliefs, allowing identification of each player’s belief about the other player’s choice. In contrast, 
this paper remains agnostic regarding the underlying factors that lead to violations of QRE. Instead, we aim to derive a test that has 
the power to reject QRE in the presence of any potential factor that may cause its violation.

The rest of the paper proceeds as follows. Section 2 reviews QRE in 2 × 2 games, and Section 3 presents the identification results 
and our test. Generalizations to games with more players and / or more actions require extra notation, and are in the appendix. A 
Monte Carlo exercise is presented in Section 4 and the laboratory experiment is discussed in Section 5. We conclude in Section 6. 
Proofs and other extensions are delegated to the appendix.

2. QRE in 𝟐 × 𝟐 games

Players are indexed by 𝑖 ∈ {1, 2} and −𝑖 represents the other player. Each player 𝑖 simultaneously chooses an action, denoted as 
𝑎𝑖, from their action set A𝑖 = {0, 1}. Moreover, let 𝐚 = (𝑎𝑖, 𝑎−𝑖) ∈ A = A𝑖 × A−𝑖 be an action profile of this game. In an experiment, 
when 𝐚 is the chosen profile, player 𝑖 will receive a monetary payoff that equals 𝑚𝑖(𝐚) in experimental currency units.

We define 𝑢𝑖(𝑚) ∶ ℝ → ℝ as player 𝑖’s utility function, so that their preference depends on, but is not necessarily equal to, their 
monetary reward 𝑚. Given this function, player 𝑖 will receive a utility 𝑢𝑖[𝑚𝑖(𝐚)] when the realized action profile is 𝐚. We consider a 
non-parametric specification of 𝑢𝑖(𝑚) which allows for any form of self-regarding preferences for money within the expected-utility 

5 Goeree et al. (2003) is an early attempt to relax the known utility assumption. They assume a parametric utility function and also impose the distributional 
assumption.

6 Another important example that exploits this reduced-form approach is the rank-dependent choice equilibrium by Goeree et al. (2019).
7 In our setting, each player’s utility is a function that depends only on their received monetary reward, and this reward varies across action profiles and games. 

The structure of monetary payoffs leads to model restrictions beyond those typical in field data. For instance, suppose that one player receives the same monetary 
reward in two action profiles (either in the same game or in different games), our setting implies that this player must receive the same utility. This restriction (and 
3

others) allow us to identify a more general error structure and obtain a test with higher statistical power.
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Table 1

Monetary payoff matrix of the matching pennies (𝑚1 > 8, 
𝑚2 > 8) game.

MP Player 2

0 1

P
la

y
e
r

1 0
8

𝑚1

16
8

1
𝑚2

8
8

16

framework imposed by QRE. Moreover, we allow 𝑢𝑖(⋅) to be heterogeneous across players or participants in economic experiments. 
We only impose weak restrictions on 𝑢𝑖(𝑚), as stated by Assumption 1.

Assumption 1. Each player 𝑖’s utility function 𝑢𝑖(𝑚) is strictly increasing and continuous in 𝑚.

In this 2 ×2 game, let 𝐦𝑖 be a 4 ×1 vector that equals 
[
𝑚𝑖(𝑎𝑖 = 0, 𝑎−𝑖 = 0), 𝑚𝑖(𝑎𝑖 = 0, 𝑎−𝑖 = 1), 𝑚𝑖(𝑎𝑖 = 1, 𝑎−𝑖 = 0), 𝑚𝑖(𝑎𝑖 = 1, 𝑎−𝑖 = 1)

]′
. 

Each element in 𝐦𝑖 represents player 𝑖’s monetary reward for the corresponding action profile. In our notation of 𝑚𝑖(𝐚), the term 𝑚𝑖

is not interpreted as a function that depends on 𝐚. Instead, 𝑚𝑖 is treated as an observed variable that may vary across games, with 𝐚
serving as an index representing the |𝐚|𝑡ℎ variable.8 In summary, the results in this paper are applicable to any experimental dataset 
where the analyst can observe each action profile’s outcome variable 𝑚𝑖(𝐚) and where each player’s preferences are defined over the 
space of such an outcome variable.

Our empirical setting is an experiment that exogenously and independently varies each player’s monetary payoffs. Suppose that 
we fix 𝐦𝑖 and only consider the variation of 𝐦−𝑖. Under QRE, player −𝑖’s choice probability will exogenously vary due to the variation 
of 𝐦−𝑖. Moreover, the structure of QRE implies that such probability can be viewed as a regressor for player 𝑖’s decision rule with 
player 𝑖’s utility as the corresponding coefficient. Notably, this coefficient remains unchanged due to the fixation of 𝐦𝑖 . As we will 
demonstrate in Section 3, such a regression-based interpretation leads to the identification of the error distribution.

To formally state the above condition of exogenous variation, define M𝑖(𝐚) ⊆ℝ as the support of 𝑚𝑖(𝐚) (i.e., the set of all possible 
values that 𝑚𝑖(𝐚) can take). In addition, let M𝑖 ⊆ ×𝐚M𝑖(𝐚) denote the support of player 𝑖’s own monetary rewards 𝐦𝑖. The exogenous 
condition is summarized by Assumption 2.

Assumption 2. The following conditions are satisfied for each player 𝑖:

(a) For each 𝐚 ∈A, M𝑖(𝐚) is either a singleton or an interval.

(b) There exists at least one 𝐚 ∈A such that M𝑖(𝐚) is an interval.

(c) Conditional on each 𝐦−𝑖 ∈M−𝑖, 𝐦𝑖 has exogenous variation over its support M𝑖.

The structure of M ≡M𝑖 ×M−𝑖 determines the type of game. Assumption 2 allows for general structures. Specifically, it includes 
experiments that vary every action profile’s payoffs across games as well as experiments that only vary some profiles’ payoffs (i.e., 
M𝑖(𝐚) is an interval) while holding the payoffs of other profiles constant (i.e., M𝑖(𝐚) is a singleton). Assumption 2(b) only requires 
that, for each player 𝑖, there are variations of monetary payoffs for at least one action profile. In addition, across games, player 𝑖’s 
monetary rewards of any two profiles could be either independent or exhibit arbitrary correlations.

For instance, Table 1 represents a matching pennies game that independently varies each player’s monetary rewards for only one 
action profile, as represented by variables 𝑚1 and 𝑚2. In contrast, the payoffs of all other profiles remain unchanged across games. 
This matching pennies game has been studied by Goeree and Holt (2001) among others. We also study this game in our Monte Carlo 
exercise and empirical application.

Table 2 represents a coordination game that is generated by a different structure of M. Specifically, player 𝑖’s payoff of the safe 
action (i.e., 𝑎𝑖 = 0) does not depend on the other player’s choice and varies by the same magnitude across games. In this example, 
the payoffs of two action profiles are perfectly positively correlated.

To define QRE in this environment, let 𝑝−𝑖(𝐦) denote player −𝑖’s choice probability of action 𝑎−𝑖 = 0. Since we consider strategic 
settings, a player’s decision depends on all players’ monetary rewards 𝐦 = (𝐦′

𝑖 , 𝐦
′
−𝑖)

′. Given 𝑝−𝑖(𝐦), the expected utility of action 𝑎𝑖
for player 𝑖 is as follows:

𝐸𝑈𝑖[𝐦𝑖, 𝑎𝑖, 𝑝−𝑖(𝐦)] = 𝑢𝑖[𝑚𝑖(𝑎𝑖, 𝑎−𝑖 = 0)] ⋅ 𝑝−𝑖(𝐦) + 𝑢𝑖[𝑚𝑖(𝑎𝑖, 𝑎−𝑖 = 1)] ⋅ [1 − 𝑝−𝑖(𝐦)]. (1)

This expected utility 𝐸𝑈𝑖(⋅, 𝑎𝑖) is a function that depends on player 𝑖’s own monetary rewards 𝐦𝑖 and their opponent’s 𝐦−𝑖 via the 
other player’s choice probabilities 𝑝−𝑖(𝐦). We focus on structural QRE that places an additively separable error on this expected 
utility. Specifically, let 𝜀𝑖(𝑎𝑖) denote the error on player 𝑖’s expected utility of action 𝑎𝑖. Consequently, player 𝑖 will choose 𝑎𝑖 = 0 if 
and only if the following condition holds:

8 We define |𝐚| = 𝑎𝑖 ⋅ |A−𝑖| + 𝑎−𝑖 + 1. With this definition, 𝑚𝑖(𝐚) can be equivalently represented as 𝑚𝑖,|𝐚| and 𝐦𝑖 is a vector of four variables in the form of 
4

(𝑚𝑖,1, 𝑚𝑖,2, 𝑚𝑖,3, 𝑚𝑖,4)′ . We decided against this alternative representation as it is cumbersome for the proofs of some results.
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Table 2

Monetary payoff matrix of the coordination (0 ≤ 𝑚𝑖 ≤ 15) 
game.

CO Player 2

0 1

P
la

y
e
r

1 0
𝑚2

𝑚1

0
𝑚1

1
𝑚2

0
15

15

𝐸𝑈𝑖[𝐦𝑖, 𝑎𝑖 = 0, 𝑝−𝑖(𝐦)] + 𝜀𝑖(𝑎𝑖 = 0) ≥𝐸𝑈𝑖[𝐦𝑖, 𝑎𝑖 = 1, 𝑝−𝑖(𝐦)] + 𝜀𝑖(𝑎𝑖 = 1)

⇔ 𝜀𝑖(𝑎𝑖 = 1) − 𝜀𝑖(𝑎𝑖 = 0)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=�̃�𝑖

≤𝐸𝑈𝑖[𝐦𝑖, 𝑎𝑖 = 0, 𝑝−𝑖(𝐦)] −𝐸𝑈𝑖[𝐦𝑖, 𝑎𝑖 = 1, 𝑝−𝑖(𝐦)]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=𝐸𝑈𝑖[𝐦𝑖 ,𝑝−𝑖(𝐦)]

. (2)

To derive the QRE choice probabilities, let 𝐹𝑖(⋅) be the cumulative distribution function (C.D.F.) of �̃�𝑖 = [𝜀𝑖(𝑎𝑖 = 1) −𝜀𝑖(𝑎𝑖 = 0)]. We 
specify 𝐹𝑖(�̃�𝑖) to be a non-parametric function that is unknown to the analyst and allow this distribution function to be heterogeneous 
across players and experimental participants with the following restrictions summarized by Assumption 3.

Assumption 3.

(a) For each player 𝑖, 𝐹𝑖(�̃�𝑖) is continuously differentiable and strictly increasing over the real line.

(b) For each player 𝑖, 𝐹𝑖(�̃�𝑖) is independent of (𝐦𝑖, 𝐦−𝑖).

Assumption 3(a) is the standard regularity condition that connects structural QRE to regular QRE (Goeree et al., 2005). In partic-

ular, Assumption 3(a) implies that the choice probability of any action 𝑎𝑖 is strictly positive (i.e., the interiority condition)9 and is 
strictly increasing in this action’s expected utility (i.e., the responsiveness condition). It also implies that the quantal response function 
is continuous and differentiable (i.e., the continuity condition). Most applications of structural QRE further assume that 𝜀𝑖(𝑎𝑖) is i.i.d. 
across actions so that the difference of errors, denoted as �̃�𝑖, has a median of zero. This zero median restriction implies that 𝑎𝑖 is chosen 
more frequently than 𝑎′𝑖 if 𝑎𝑖 has a higher expected utility than 𝑎′𝑖 (i.e., monotonicity condition). Equivalently, Assumption 3(a) and 
the i.i.d. restriction imply all four conditions of the regular quantal response function so that structural QRE is nested in regular QRE. 
In contrast, we relax the i.i.d. restriction to allow for systematic errors. For instance, players may consistently over-estimate their 
expected utility of action 𝑎. In this case, the choice probability of 𝑎 can be higher than 𝑎′ even when 𝑎 has a lower actual expected 
utility (i.e., violation of monotonicity). Since we allow for systematic errors, regular QRE does not nest the class of structural QRE 
considered in this paper, and vice versa.

Assumption 3(b) is known as the invariance assumption and requires the error distribution to remain unchanged across games. 
It is commonly maintained in empirical applications of QRE, including formal tests of QRE (Melo et al., 2019; Goeree et al., 2020; 
Aguirregabiria and Xie, 2021). In an extension offered in the appendix, we relax this invariance assumption by allowing 𝐹𝑖(⋅) to 
depend on player 𝑖’s own 𝐦𝑖 but to be independent of the other player’s 𝐦−𝑖.

Given Equation (2) and 𝐹𝑖(⋅), player 𝑖’s choice probability of action 𝑎𝑖 = 0 takes the form of a quantal response function, as 
presented below:

𝑝𝑖(𝐦) = 𝐹𝑖

[
𝐸𝑈𝑖

(
𝐦𝑖, 𝑎𝑖 = 0, 𝑝−𝑖(𝐦)

)
−𝐸𝑈𝑖

(
𝐦𝑖, 𝑎𝑖 = 1, 𝑝−𝑖(𝐦)

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=𝐸𝑈𝑖

(
𝐦𝑖 ,𝑝−𝑖(𝐦)

)
]
. (3)

In QRE, each player forms correct beliefs about other players’ choice probabilities. Consequently, QRE is a fixed point in the space 
of choice probabilities defined by:

Definition 1. For any 𝐦 ∈M, the vector 
(
𝑝𝑖(𝐦), 𝑝−𝑖(𝐦)

)′
is a QRE if and only if the following condition holds:

𝑝𝑖(𝐦) = 𝐹𝑖

[
𝐸𝑈𝑖

(
𝐦𝑖, 𝑎𝑖 = 0, 𝑝−𝑖(𝐦)

)
−𝐸𝑈𝑖

(
𝐦𝑖, 𝑎𝑖 = 1, 𝑝−𝑖(𝐦)

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=𝐸𝑈𝑖

(
𝐦𝑖 ,𝑝−𝑖(𝐦)

)
]
,∀𝑖 ∈ {1,2}, (4)

where 𝐹𝑖(⋅) satisfies Assumption 3.

9 This interiority condition is the result of �̃�𝑖 having full support over ℝ. The full support condition also implies that the variance of �̃�𝑖 is strictly positive, though can 
be arbitrarily small. Therefore our framework does not include NE (i.e., 𝑉 𝑎𝑟(�̃�𝑖) = 0) as a special case, but can well approximate it with an arbitrarily small 𝑉 𝑎𝑟(�̃�𝑖). 
5

We maintain the full support condition since it is necessary to avoid the zero-likelihood problem.
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Since 𝐹𝑖(⋅) is continuous by Assumption 3(a), any game has at least one QRE according to Brouwer’s fixed-point theorem. When 
multiple QRE exist, we assume that there is a deterministic equilibrium selection mechanism that chooses one of these equilibria, as 
stated in Assumption 4. Therefore, even though there may be multiple equilibria in the model, the analyst only observes a single 
equilibrium for each game in the data. Except for this deterministic condition, we do not impose any further restrictions on the 
selection mechanism.

Assumption 4. For any 𝐦 ∈M, if there are multiple vectors 
(
𝑝𝑖(𝐦), 𝑝−𝑖(𝐦)

)′
that satisfy the conditions in Definition 1 (i.e., multiple 

QRE), there exists a mechanism that selects one of the vectors.

3. Identification results and the over-identification test

In this section, we demonstrate that both the error distribution and utility function can be non-parametrically over-identified 
under the QRE restrictions (Equation (4)). This result further implies that the null hypothesis of QRE can be tested employing the 
standard over-identification test.

To derive these results, we introduce a continuity condition on 𝑝𝑖(𝐦).

Assumption 5. For each player 𝑖, the choice probability function 𝑝𝑖(𝐦) varies with both 𝐦𝑖 and 𝐦−𝑖. Moreover, 𝑝𝑖(𝐦) is continuous 
over its support M with probability 1. If there are points of discontinuity in M, the number of all discontinuous points is finite.

This condition is quite weak. When there is a unique equilibrium for each 𝐦 (e.g., matching pennies in Table 1), Assumption 5

trivially holds under the restrictions of QRE by Definition 1 (Aguirregabiria and Mira, 2019). In scenarios where there are multiple 
QRE (for example, the coordination game in Table 2), Aguirregabiria and Mira (2019) show that every QRE can be classified into a 
finite number of types. Within each type, QRE choice probabilities are continuous in 𝐦. Consequently, 𝑝𝑖(𝐦) is discontinuous only 
when players switch between equilibrium types. Importantly, Assumption 5 allows players to select an equilibrium in any arbitrary 
way, and only restricts the number of equilibrium switching points to be finite.10 Assumption 5 also holds in alternative behavioral 
models such as Level-𝑘 (Nagel, 1995), cognitive hierarchy (Camerer et al., 2004), and more general iterative reasoning models (Halevy 
et al., 2023). In these models, the continuity of the error distribution and the utility function directly implies the continuity of 𝑝𝑖(𝐦).

To derive the identification results, we focus directly on each player’s choice probability and assume that 𝑝𝑖(𝐦) and 𝑝−𝑖(𝐦) are 
observed by the analyst. This assumption is innocuous since these probabilities can be consistently estimated using choice data. 
In practice, this approach is applicable to datasets for which only a single choice is observed from each (𝐦𝑖 , 𝐦−𝑖) pair (as in our 
experiment).11 For notation, we use pure letters (e.g., 𝐦𝑖) to denote random variables and add superscripts to the letters (e.g., 𝐦1

𝑖 ) 
to denote their realizations.

3.1. Over-identification of the error distribution

Given Assumption 3(a), we can invert the QRE conditions in Equation (4).12 This inversion expresses the difference of expected 
utilities for player 𝑖, which is linear in player −𝑖’s choice probability:

𝐹−1
𝑖 [𝑝𝑖(𝐦𝑖,𝐦−𝑖)] =𝐸𝑈𝑖[𝐦𝑖, 𝑎𝑖 = 0, 𝑝−𝑖(𝐦𝑖,𝐦−𝑖)] −𝐸𝑈𝑖[𝐦𝑖, 𝑎𝑖 = 1, 𝑝−𝑖(𝐦𝑖,𝐦−𝑖)]

= �̃�𝑖(𝐦𝑖, 𝑎−𝑖 = 1) + [�̃�𝑖(𝐦𝑖, 𝑎−𝑖 = 0) − �̃�𝑖(𝐦𝑖, 𝑎−𝑖 = 1)] ⋅ 𝑝−𝑖(𝐦) ∀𝑖. (5)

To derive the second line of Equation (5), 𝐸𝑈𝑖(⋅) needs to be replaced with its definition in Equation (1) and we define �̃�𝑖(𝐦𝑖, 𝑎−𝑖) =
𝑢𝑖[𝑚𝑖(𝑎𝑖 = 0, 𝑎−𝑖)] − 𝑢𝑖[𝑚𝑖(𝑎𝑖 = 1, 𝑎−𝑖)]; where �̃�𝑖(𝐦𝑖, 𝑎−𝑖) represents the difference of the utilities between player 𝑖’s two actions given 
the other player’s choice 𝑎−𝑖.

Equation (5) contains all model restrictions that are imposed on player 𝑖’s behavior and, importantly, implies that the error 
distribution is over-identified. To see why, first define P𝑖(𝐦1

𝑖 ) ⊂ [0, 1] as the image of the choice probability function 𝑝𝑖(𝐦𝑖, 𝐦−𝑖)
when the analyst fixes 𝐦𝑖 at 𝐦1

𝑖 but varies 𝐦−𝑖 over its support. Similarly, let P𝑖 ⊂ [0, 1] denote the image of 𝑝𝑖(𝐦𝑖, 𝐦−𝑖) when the 
analyst varies both 𝐦𝑖 and 𝐦−𝑖. Given Assumptions 2 and 5, these images are either an interval or a union of finite numbers of disjoint 
intervals. Proposition 1 describes the over-identification of 𝐹𝑖(⋅).

10 Notably, we do not require the analyst to know these switching points. For instance, consider the coordination game in Table 2. It is reasonable to expect that 
players may choose the equilibrium with a low probability of the safe action (i.e., action 0) when the payoff for the safe action—as represented by 𝑚𝑖—is relatively low. 
As 𝑚𝑖 increases, players may switch to the equilibrium with a higher probability of action 0. Assumption 5 includes this reasonable equilibrium selection mechanism 
as a special case.
11 In more detail, suppose that the analyst has a dataset of a series of games with different (𝐦𝑖, 𝐦−𝑖). If 𝑝𝑖(𝐦) is continuous ∀𝐦 ∈ M, the analyst could use the 

Nadaraya-Waston estimator or the method of sieves to consistently estimate 𝑝𝑖(𝐦). If this choice probability function contains finite discontinuous points, consistent 
estimation could be also attained using the methods developed by Müller (1992) and Delgado and Hidalgo (2000).
12 In games where players have more than two actions, we utilize the bijective results from discrete choice literature (Hotz and Miller, 1993; Sørensen and Fosgerau, 
6

2022) to establish the inversion of QRE conditions. See the appendix for more details.
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Proposition 1. Suppose that Assumptions 1 to 5 and the QRE restrictions hold. Suppose further that the analyst fixes 𝐦𝑖 at an arbitrary 
value 𝐦1

𝑖 and only considers the variation of 𝐦−𝑖. If there exist two distinct values of probabilities, denoted as 𝑝1, 𝑝2 ∈ P𝑖(𝐦1
𝑖 ), such that the 

values of 𝐹−1
𝑖 (𝑝1) and 𝐹−1

𝑖 (𝑝2) are known by the analyst, then the quantile function 𝐹−1
𝑖 (𝑝) is point identified ∀𝑝 ∈ P𝑖(𝐦1

𝑖 ).

Proof. See the appendix. □

Proposition 1 identifies the quantile function 𝐹−1
𝑖 (𝑝) and consequently the distribution function 𝐹𝑖(�̃�) due to the inverse relation-

ship between the two functions. Moreover, by applying Proposition 1 for each 𝐦𝑖 ∈M𝑖, the analyst can identify 𝐹−1
𝑖 (𝑝) over its entire 

support, i.e., ∀𝑝 ∈ P𝑖.

The over-identification result arises from a combination of the restrictions imposed by QRE. Specifically, player 𝑖’s decision rule 
(Equation (2)) can be interpreted as a discrete choice model where each action 𝑎𝑖 has a deterministic component 𝐸𝑈𝑖[𝐦𝑖, 𝑎𝑖, 𝐩−𝑖(𝐦)]
and a perturbed error 𝜀𝑖(𝑎𝑖). In single agent models without uncertainty, Norets and Takahashi (2013) show that without additional 
restrictions on the deterministic component, even partial identification of the error distribution is impossible. However, the expected-

utility preference (which is assumed by QRE) places additional structure that allows the exogenous variation of 𝐦 to point identify 
the error distribution. Specifically, player 𝑖’s expected utility function 𝐸𝑈𝑖(⋅) is linear in the other player’s choice probability, despite 
the non-parametric utility function 𝑢𝑖(⋅).

It is this linearity combined with the QRE choice rule that leads to Equation (5), which is the key equation to establish our 
identification results. Consider fixing 𝐦𝑖 at some value 𝐦1

𝑖 while varying the other player’s 𝐦−𝑖. Since player 𝑖’s monetary rewards 
are fixed, their utility difference remains unchanged at �̃�𝑖(𝐦1

𝑖 , 𝑎−𝑖). In contrast, the choice probability of the other player 𝑝−𝑖(𝐦)
depends on both 𝐦𝑖 and 𝐦−𝑖 and will shift due to variation in 𝐦−𝑖. Consequently, the right-hand side of Equation (5) can be viewed 
as a linear regression where 𝑝−𝑖(𝐦) is the independent variable with a coefficient [�̃�𝑖(𝐦1

𝑖 , 𝑎−𝑖 = 0) − �̃�𝑖(𝐦1
𝑖 , 𝑎−𝑖 = 1)] and an intercept 

�̃�𝑖(𝐦1
𝑖 , 𝑎−𝑖 = 1). This linear structure is akin to the semi-parametric binary choice models studied by Klein and Spady (1993) and 

Lewbel (2000), who established the non-parametric identification of the error distribution. Importantly, our framework remains fully 
non-parametric in both the utility and the distribution functions.

Proposition 1 requires the analyst to know ex ante the values of the quantile function at two probabilities 𝑝1 and 𝑝2. In the context 
of discrete choice games with field data, Liu et al. (2017) show that this requirement is innocuous and is equivalent to the standard 
location and scale normalizations required by discrete choice models (Train, 2009).13 In Subsection 3.3, we show that in experimental 
settings, the values of 𝐹−1

𝑖 (𝑝1) and 𝐹−1
𝑖 (𝑝2) can be identified under weaker assumptions and are therefore not required to be known.

We refer to Proposition 1 as the over-identification result. Intuitively, with only two values of 𝐦𝑖 , Proposition 1 implies that 𝐹−1
𝑖 (⋅)

is over-identified. In the next subsection, we build on this intuition and construct an over-identification test for the hypothesis of QRE 
for all 𝐦𝑖.

3.2. Test of QRE

Let 𝐹−1
𝑖 (𝑝|𝐦1

𝑖 ) be the quantile function that satisfies the QRE restrictions when the analyst fixes 𝐦𝑖 at 𝐦1
𝑖 . Specifically, 𝐹−1

𝑖 (𝑝|𝐦1
𝑖 )

satisfies the following equation:

𝐹−1
𝑖 [𝑝𝑖(𝐦1

𝑖 ,𝐦−𝑖)|𝐦1
𝑖 ] = �̃�𝑖(𝐦1

𝑖 , 𝑎−𝑖 = 1) + [�̃�𝑖(𝐦1
𝑖 , 𝑎−𝑖 = 0) − �̃�𝑖(𝐦1

𝑖 , 𝑎−𝑖 = 1)] ⋅ 𝑝−𝑖(𝐦1
𝑖 ,𝐦−𝑖). (6)

Proposition 1 shows that 𝐹−1
𝑖 (𝑝|𝐦𝑖) can be identified for each 𝐦𝑖. This implies an over-identifying restriction such that 𝐹−1

𝑖 (𝑝|𝐦1
𝑖 ) =

𝐹−1
𝑖 (𝑝|𝐦2

𝑖 ) ∀𝐦
1
𝑖 ≠𝐦2

𝑖 . This restriction can be used to test the null hypothesis of QRE as stated in Proposition 2.

Proposition 2. Suppose that Assumptions 1 to 5 hold and consider any two realizations of 𝐦𝑖 denoted as 𝐦1
𝑖 and 𝐦2

𝑖 such that P𝑖(𝐦1
𝑖 ) ∩

P𝑖(𝐦2
𝑖 ) includes an interval. If there exist two distinct probabilities denoted as 𝑝1, 𝑝2 ∈ P𝑖(𝐦1

𝑖 ) ∩ P𝑖(𝐦2
𝑖 ) such that the values of 𝐹−1

𝑖 (𝑝1) and 
𝐹−1
𝑖 (𝑝2) are known by the analyst, then the null hypothesis of QRE implies the following testable restriction:

𝐹−1
𝑖 (𝑝|𝐦1

𝑖 ) = 𝐹−1
𝑖 (𝑝|𝐦2

𝑖 ), ∀𝑝 ∈ P𝑖(𝐦1
𝑖 ) ∩ P𝑖(𝐦2

𝑖 ). (7)

Proof. A direct implication of Proposition 1. □

Equation (7) is a testable implication of player 𝑖’s quantal response behavior, testing whether they quantal respond to other 
players’ choice probabilities. To perform our test of QRE, we examine whether Equation (7) jointly holds for every player, therefore 
we employ the equilibrium correspondence approach as described in Sections 4 and 5.

Proposition 2 extends and generalizes previous tests of QRE in the existing literature. In particular, Xie (2022) also derives a 
non-parametric testable implication of BNE and equivalently of QRE. His result can be summarized by the following lemma:

13 For instance, let 𝑝1 = 1∕2, then setting 𝐹−1
𝑖 (𝑝1) = 0 is equivalent to the location normalization that sets the median value of �̃�𝑖 to zero. Moreover, let 𝑝2 be the 

cumulative probability at one standard deviation above the median (e.g., approximately 68% for the normal distribution and roughly 86% for the Logit specification), 
7

then setting 𝐹−1
𝑖 (𝑝2) = 1 is equivalent to the scale normalization that sets the standard deviation of �̃�𝑖 to one.
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Fig. 1. Testable implication of QRE. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Lemma 1. (Xie 2022) Suppose that Assumptions 1 to 5 hold. For any three pairs of realizations of (𝐦𝑖, 𝐦−𝑖) that satisfy the condition 
𝑝𝑖(𝐦1

𝑖 , 𝐦
1(𝑙)
−𝑖 ) = 𝑝𝑖(𝐦2

𝑖 , 𝐦
2(𝑙)
−𝑖 ) for 𝑙 = 1, 2, 3; QRE implies the following testable restriction:

𝑝−𝑖(𝐦1
𝑖 ,𝐦

1(3)
−𝑖 ) − 𝑝−𝑖(𝐦1

𝑖 ,𝐦
1(1)
−𝑖 )

𝑝−𝑖(𝐦1
𝑖 ,𝐦

1(2)
−𝑖 ) − 𝑝−𝑖(𝐦1

𝑖 ,𝐦
1(1)
−𝑖 )

=
𝑝−𝑖(𝐦2

𝑖 ,𝐦
2(3)
−𝑖 ) − 𝑝−𝑖(𝐦2

𝑖 ,𝐦
2(1)
−𝑖 )

𝑝−𝑖(𝐦2
𝑖 ,𝐦

2(2)
−𝑖 ) − 𝑝−𝑖(𝐦2

𝑖 ,𝐦
2(1)
−𝑖 )

, (8)

when 𝑝𝑖(𝐦1
𝑖 , 𝐦

1(1)
−𝑖 ) ≠ 𝑝𝑖(𝐦1

𝑖 , 𝐦
1(2)
−𝑖 ).

Our over-identification test illustrated in Proposition 2 advances Xie (2022)’s test in three important directions. First, as shown 
in Lemma 1, Xie (2022) requires an equal choice probability condition for at least three pairs of games.14 This condition is difficult 
to construct in an actual dataset because it requires equating two estimated quantities and has yet to be implemented.15 In contrast, 
our test in Proposition 2 circumvents the equal choice probability condition. It is, essentially, a by-product of the non-parametric 
estimation of the model primitives. Such estimation methods have been well developed in the econometrics literature. For our 
experimental analysis in Section 5, we apply non-parametric MLE by the method of sieves (Chen, 2007) to obtain the non-parametric 
estimate of the error distribution and implement the test.

Second, to implement Xie (2022)’s test, the analyst has to estimate and test the restrictions on each player’s 𝑝𝑖(𝐦𝑖, 𝐦−𝑖), which is 
a multi-variate function. In contrast, our test requires the estimation of just two single-dimensional functions: 𝐹𝑖(�̃�𝑖) and 𝑢𝑖(𝑚). This 
dimension reduction improves estimation precision in finite samples, especially with a fully non-parametric specification. The benefit 
of dimension reduction is even more pronounced as the number of actions and / or players increases.16

Finally, our over-identification test includes not only all the testable implications derived by Xie (2022) but also many additional 
restrictions imposed by QRE. Consequently, our test has higher statistical power. While the detailed descriptions and proofs of these 
results are left to the appendix, we conduct a simulation of the matching pennies game in Table 1 to explain how our test nests Xie 
(2022). Fig. 1 shows simulated choice probabilities under QRE restrictions for various monetary payoffs.17 The left panel plots Player 
1’s choice probability as a function of 𝑚2. We hold 𝑚1 constant at two distinct values: 𝑚1

1 = 10 (𝑚2
1 = 16) is depicted using the blue 

14 Precisely, a pair consists of two games with different realizations of (𝐦𝑖, 𝐦−𝑖) and player 𝑖’s choice probability must remain constant within each pair.
15 Specifically, it requires equating two functions of the estimates 𝑝𝑖(𝐦). This process incurs estimation error that substantially complicates the derivation of the 

finite sample property of the test.
16 The dimension of 𝑝𝑖(𝐦𝑖 , 𝐦−𝑖) grows in the order of |A|𝑁 , where |A| is the number of action profiles and 𝑁 is the number of players. In contrast, the dimension 

of the error distribution only increases in the order of |A𝑖|, which is merely the number of player 𝑖’s actions. Additionally, the single dimension of the utility function 
remains constant.
17 For illustrative purposes only, our simulation simply assumes players’ utilities equal their monetary payoffs (i.e., 𝑢𝑖(𝑚) =𝑚) and employs the Logit choice proba-
8

bility.
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Fig. 2. Violation of the testable implication under non-QRE behaviors.

(black) curve. It also identifies three pairs of games that satisfy the equal choice probability condition for Player 1. Xie (2022) shows 
that under QRE, the ratio of the change in Player 2’s choice probabilities across these pairs must be equal. These changes in 𝑝2(⋅) are 
depicted by the colored dashed lines in the right panel. Based on Xie’s test, the ratio of two dashed blue lines must equal the ratio of 
two dashed black lines.

As described in the appendix, our over-identification test implies that the ratio of both the change and the level of Player 2’s choice 
probabilities across pairs must be equal. Consequently, our test can be visualized by at least two restrictions in the right panel. The 
first one, as described by Xie (2022) on the colored dashed lines, and the second visualized by a set of two similar triangles positioned 
on the blue and black curves respectively.

Fig. 2 shows a simulation of behavior that violates QRE. We fix Player 2’s choice probabilities at their QRE levels, but we assume 
that Player 1 always underestimates Player 2’s choice probability by 20 percentage points. These behaviors clearly violate QRE but 
they align with the testable implication proposed in Xie (2022). In contrast, such behaviors do not satisfy our additional testable 
implications, causing the two dissimilar triangles on the blue and black curves. This example graphically highlights the additional 
statistical power of our test. Notably, in the appendix, we show that there are many other testable implications of QRE in addition 
to Xie (2022). These implications are difficult to visualize and are not depicted in Figs. 1 and 2. They are, however, included in our 
over-identification test.

3.3. Identification of normalizations and the utility function

Most empirical applications of QRE assume that two actions will be chosen with equal probability if they share the same expected 
utility. In our framework, this assumption corresponds to assuming that the median of �̃�𝑖 is zero. In this subsection, we show that 
such an assumption is not necessary for identification. In fact, the analyst can identify the median value of �̃�𝑖 .

As described in footnote 13, we shall refer to 𝐹−1
𝑖 (𝑝1) and 𝐹−1

𝑖 (𝑝2) as the median and the standard deviation of �̃�𝑖 , respectively. 
To identify these two values, we introduce an innocuous scale normalization on the utility function, as described by the following 
assumption:

Assumption 6. For each player 𝑖, there exists a realization 𝐦𝑖 =𝐦1
𝑖 such that �̃�𝑖(𝐦1

𝑖 , 𝑎−𝑖 = 1) = 1.

Assumption 6 normalizes the scale of player 𝑖’s utility function. It is innocuous given that 𝑢𝑖(𝑚) is strictly increasing.18 Proposition 3

shows that once the analyst determines the scale of the utility function, the standard deviation of the error distribution is identified 
(i.e., the value of 𝐹−1

𝑖 (𝑝2)).

18 Since any affine transformation of utility 𝑢𝑖(𝑚) = 𝑐 + 𝛽�̂�𝑖(𝑚) for 𝛽 > 0 represents the same preferences, the analyst needs to normalize the values of 𝑐 and 𝛽 . For 
any utility function �̂�𝑖(𝑚), Assumption 6 simply transforms �̂�𝑖(𝑚) to its equivalent form by setting 𝛽 = 1

�̂�𝑖 [𝑚1
𝑖 (𝑎𝑖=0,𝑎−𝑖=1)]−�̂�𝑖 [𝑚

1
𝑖 (𝑎𝑖=1,𝑎−𝑖=1)]

. Here, the analyst can ensure a 
positive denominator by re-labeling each player’s action, in any game where 𝑚𝑖(𝑎𝑖 = 0, 𝑎−𝑖) ≠ 𝑚𝑖(𝑎𝑖 = 1, 𝑎−𝑖) for some 𝑎−𝑖 . We do not consider an experiment where 
𝑚𝑖(𝑎𝑖 = 0, 𝑎−𝑖) = 𝑚𝑖(𝑎𝑖 = 1, 𝑎−𝑖) for all 𝑎−𝑖 , as this type of games implies that player 𝑖 has two identical actions. For instance, the utilities of 𝑎𝑖 = 0 and 𝑎𝑖 = 1 are the 
9

same, regardless of player −𝑖’s choices.
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Proposition 3. Suppose that Assumptions 1 to 6 and the QRE restrictions hold. If there exists one probability denoted as 𝑝1 ∈ P𝑖(𝐦1
𝑖 ) such 

that the value of 𝐹−1
𝑖 (𝑝1) is known by the analyst, then the quantile function 𝐹−1

𝑖 (𝑝) is point identified ∀𝑝 ∈ P𝑖(𝐦1
𝑖 ).

Due to Proposition 3, the only value that requires the analyst’s prior information is the median of �̃�𝑖 (i.e., 𝐹−1
𝑖 (𝑝1)). In the appendix, 

we show that in any experiment, as long as there is exogenous variation of the monetary payoffs for at least two action profiles for 
each player, this median value is identified.

When there is variation of monetary reward for only one action profile, the identification of 𝐹−1
𝑖 (𝑝1) requires special structures 

of monetary payoffs. Assumption 7 summarizes two such structures, which are satisfied in the matching pennies game presented in 
Table 1.

Assumption 7. Consider the following properties of monetary payoff matrices for each player 𝑖:
(a) There exists one realization of 𝐦𝑖 , denoted as 𝐦1

𝑖 , such that 𝑚1
𝑖 (𝑎𝑖, 𝑎−𝑖) =𝑚1

𝑖 (1 − 𝑎𝑖, 1 − 𝑎−𝑖) ∀𝑎𝑖, 𝑎−𝑖.
(b) There exist two realizations of 𝐦𝑖, denoted as 𝐦1

𝑖 and 𝐦2
𝑖 , such that 𝑚1

𝑖 (𝑎𝑖, 𝑎−𝑖) =𝑚2
𝑖 (1 − 𝑎𝑖, 𝑎′−𝑖) ∀𝑎𝑖 and for some 𝑎−𝑖 and 𝑎′−𝑖. 

Note that 𝑎−𝑖 and 𝑎′−𝑖 could be either distinct or identical actions of player −𝑖.

Assumption 7(a) considers a design where player 𝑖’s payoffs for both actions are reversed across the other player’s choices within a 
game. It holds in Table 1 when 𝑚𝑖 = 16. Assumption 7(b) follows similarly except it reverses payoffs across games with either varying 
or fixing actions of the other player. It holds in Table 1 when the analyst considers two values 𝑚1

𝑖 = 16 and 𝑚2
𝑖 ≠ 16. Notably, this 

condition is also satisfied in the coordination game in Table 2 when the two values are 𝑚1
𝑖 = 0 and 𝑚2

𝑖 = 15.

When either condition in Assumption 7 holds, the median value of �̃�𝑖 can be identified, as established by the following proposition:

Proposition 4. Suppose that Assumptions 1 to 6 and the QRE restrictions hold. Furthermore, suppose there exist two values 𝐦𝑖 =𝐦1
𝑖 , 𝐦

2
𝑖

such that P𝑖(𝐦1
𝑖 ) ∩ P𝑖(𝐦2

𝑖 ) includes an interval. Moreover, either 𝐦1
𝑖 satisfies Assumption 7(a) or 𝐦1

𝑖 and 𝐦2
𝑖 satisfy Assumption 7(b), then 

the quantile function 𝐹−1
𝑖 (𝑝) is point identified ∀𝑝 ∈ P𝑖(𝐦1

𝑖 ) ∪ P𝑖(𝐦2
𝑖 ), without assuming that the value of 𝐹−1

𝑖 (𝑝1) is known ex ante by the 
analyst.

Proof. See the appendix. □

The identification of the median value of �̃�𝑖 , as established in Proposition 4, can be used to test the common assumption that 
the errors are i.i.d. across player 𝑖’s actions. In particular, this i.i.d. restriction on 𝜀𝑖(𝑎𝑖) implies that the difference of errors �̃�𝑖 is 
symmetrically distributed and has a median of zero.

Given that 𝐹𝑖(�̃�𝑖) has been identified, we borrow the results from the existing literature to identify non-parametrically the utility 
function, as summarized by the following lemma.

Lemma 2. (Bajari et al. 2010) Under Assumptions 1 to 7 and QRE restrictions, 𝐹𝑖(�̃�𝑖) is point identified. Therefore, the empirical model 
reduces to the semi-parametric specification by Bajari et al. (2010), where the error distribution is known by the analyst and the utility function 
is non-parametric. Therefore the difference in utility �̃�𝑖(𝐦𝑖, 𝑎−𝑖) = 𝑢𝑖[𝑚𝑖(𝑎𝑖 = 0, 𝑎−𝑖)] − 𝑢𝑖[𝑚𝑖(𝑎𝑖 = 1, 𝑎−𝑖)] is point identified ∀𝐦𝑖 ∈ M𝑖, 𝑖
and 𝑎−𝑖.

Consider the first case where M𝑖 = ×𝐚M𝑖(𝐚) and ∪𝐚M𝑖(𝐚) is an interval (e.g., the matching pennies game in Table 1). Given 
the standard location normalization such as 𝑢𝑖(0) = 0 or 𝑢𝑖[min{∪𝐚M𝑖(𝐚)}] = 0, the identification of the difference in utilities from 
Lemma 2 directly identifies the utility function 𝑢𝑖(𝑚) non-parametrically ∀𝑚 ∈ ∪𝐚M𝑖(𝐚). Moreover, under Assumption 2, there is 
a second scenario where M𝑖 ⊂ ×𝐚M𝑖(𝐚) and / or ∪𝐚M𝑖(𝐚) consists of finite number of disjoint intervals / singletons. In this case, 
whether the utility function 𝑢𝑖(𝑚) can be identified hinges on the structure of M𝑖. Nonetheless, the difference of utilities remains 
identifiable according to Lemma 2. Crucially, the combination of the identified utility difference and the identified distribution 
function is sufficient to determine the QRE choice probabilities.

4. Monte Carlo experiment

We now describe our estimation and testing procedures and examine their finite sample performance in a Monte Carlo exercise 
using the matching pennies game depicted in Table 1. We evaluate the test in two different scenarios: one where data is generated in 
a QRE, and another in which QRE is not satisfied. Moreover, we design the exercise to closely align with the actual experiment that 
will be discussed in Section 5. As such, the Monte Carlo results can be used to evaluate the reliability of the empirical findings from 
our experiment.

4.1. Design of the Monte Carlo experiment

In our experiment, each participant makes a choice in 200 rounds. For our Monte Carlo exercise, in each of 𝑆 = 1000 simulations 
10

we generate a dataset with 𝑇 trials where 𝑇 ∈ {200, 2000}. Therefore, 𝑇 = 200 and 𝑇 = 2000 can be viewed as representing situations 
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where the analyst recruits one or ten participants per player role, respectively.19 In addition, Assumption 2 requires 𝑚𝑖(𝐚) to be 
continuously distributed for at least one 𝐚. This continuity condition is necessary to identify the continuous error distribution. In 
practice, the experimental design can approximate the continuity condition by a discrete distribution with a sufficiently small step 
size. In this exercise, we independently and uniformly draw 𝑚1 and 𝑚2 from the discrete set M = {10, 12, … , 46, 48} with step size of 
2.20

In this Monte Carlo exercise, we consider three data generating processes. The first process assumes that data is generated consis-

tently with QRE. In this scenario, the rejection rate of our proposed test should match the pre-specified significance level. Moreover, 
our procedure should obtain the estimates of utility and error distributions that are close to their true values.

The second and third processes generate data that is inconsistent with QRE. These scenarios illustrate whether our test has the 
power to reject a false hypothesis and achieve a small type-2 error. We therefore consider a modification of the Level-𝑘 model to 
generate non-QRE behavior (Nagel, 1995; Stahl and Wilson, 1994, 1995; Halevy et al., 2023). Specifically, the level-0 type randomly 
selects each action with equal probability. For any 𝑘 > 0, the level-𝑘 type believes that their opponent is the level-(𝑘 − 1) type and 
quantal responds to such belief (i.e., a random error perturbed to the expected utility).

In the second process, we consider the symmetric level-𝑘 case where both players are of the same type and generate data for 
𝑘 ∈ {1, 2, 3}. Therefore, the quantal response function in Equation (3) does not hold for either player. The third process studies an 
asymmetric level-𝑘 setting where Player 1 reasons one level beyond Player 2. Therefore, the quantal response function in Equation 
(3) holds for Player 1 but not for Player 2. This scenario illustrates the performance of our test at either the player or the participant 
level. The test should frequently reject quantal response behavior for Player 2. By contrast, the rejection rate of the same hypothesis 
for Player 1 should be low and close to the desired type-1 error rate. We consider two different levels (𝑘 = 2, 3) for Player 1.

4.1.1. Utility function and error distributions

For convenience and comparability, we normalize the utility of the lowest possible (𝑚 = 8) and highest possible (𝑚 = 48) monetary 
rewards to zero and one, respectively, via the transformation �̃� = 𝑚−8

48−8 so that �̃� ∈ [0, 1]. In line with most experimental studies, we 
consider a CRRA utility function over the transformed monetary payoff �̃�:

𝑢𝑖(�̃�) = �̃�𝜈 . (9)

The utility curvature parameter 𝜈 is set to 0.6 to be consistent with the estimate obtained by Goeree et al. (2003) in their matching 
pennies game using the QRE framework.

We consider two candidates for the error distributions, both of which differ from the common specification of Logit or Probit. 
This allows us to investigate the consequences of imposing common distributional assumptions that are potentially mis-specified. In 
particular, we consider both a symmetric and an asymmetric error distribution:

Symmetric: �̃�𝑖 ∼ 0.5 ⋅ Logistic(0,7.5 ⋅ 3) + 0.5 ⋅ Logistic
(
0,7.5 ⋅

√
9
35

)
,

Asymmetric: �̃�𝑖 ∼ 0.5 ⋅ Logistic
(
− 0.2,7.5 ⋅

√
4
15

)
+ 0.5 ⋅ Logistic(0.2,7.5 ⋅ 2), (10)

where Logistic(𝜇, 𝜆) = exp[𝜆(𝜀𝑖−𝜇)]
1+exp[𝜆(𝜀𝑖−𝜇)]

is the C.D.F. of the logistic distribution, with a mean of 𝜇 and a sensitivity parameter 𝜆.

Equation (10) draws �̃�𝑖 from a mixture of logistic distributions, in line with the heterogeneity results described by Golman (2011). 
The symmetric case represents a population of two types of individuals, where one type makes smaller errors and consequently has a 
higher sensitivity parameter (𝜆 = 7.5 ⋅3) than the other 

(
𝜆 = 7.5 ⋅

√
9
35

)
. In the asymmetric distribution, alongside the heterogeneity in 

𝜆, individuals also make systematic errors. One type systematically under-values the expected utility of 𝑎𝑖 = 0 by 0.2 while the second 
type over-values it by the same amount. Since the over-valuing type also has a higher 𝜆, the population level �̃�𝑖 is asymmetrically 
distributed with a higher density in the positive region. Fig. 3 plots the P.D.F. of the symmetric and asymmetric distributions, alongside 
a comparison with the Logit specification.

We set the scale of �̃�𝑖 based on the empirical estimates in Section 5. In particular, the variances of �̃�𝑖 for both symmetric and 

asymmetric cases are set to Var(�̃�𝑖) =
𝜋2

3×(7.52) ≈ 0.0585. This value of variance corresponds to 𝜆 =
√

𝜋2

3𝑉 𝑎𝑟(�̃�𝑖)
= 7.5 if �̃�𝑖 were logistically 

distributed. Notably, this closely matches the empirical estimate of our actual experiment in Section 5 (i.e., �̂� = 7.505) and is consistent 
with the estimate reported in Goeree et al. (2003), that is, �̂� = 6.67, for a different matching pennies game but under the same 
normalization of the utility function.

19 In the actual experiment, we recruited 50 participants per role, thus corresponding to 𝑇 = 10, 000. It is computationally challenging to run a Monte Carlo with 
this sample size as it requires the estimation to be repeated for 1, 000 simulations in total. Moreover, our estimator and test achieve the desired performance when 
𝑇 = 2000.
20 This approximation by discretization is akin to the method that solves a dynamic problem. Ideally, the step size should decrease as the sample size increases so 

that M is dense in the continuous interval [10, 48] as 𝑇 →∞. However, this simulation maintains a fixed step size for two reasons. First, the step size of 2 aligns with 
our experiment in Section 5 and the Monte Carlo exercise aims to evaluate the performance of both our estimator and our test using this step size. Second, shrinking 
11

the step size in larger samples substantially increases the computational burden.
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Fig. 3. Probability density functions of the random perturbation �̃�𝑖 .

The scale of �̃�𝑖 plays an important role in shaping players’ choice probabilities under both QRE and Level-𝑘. In particular, the 
key convergence properties in Logit QRE, as derived in McKelvey and Palfrey (1995), also hold for the general distribution function 
𝐹𝑖(�̃�𝑖) in our framework.21 In the appendix, we prove these convergence properties and provide a detailed analysis of comparative 
statics.

4.2. Estimation, testing procedures, and results

4.2.1. Estimation

We exploit the method of sieves to perform a non-parametric maximum likelihood estimation. As reviewed in Chen (2007), 
this method replaces a non-parametric function by a less complex function with finite-dimensional parameters. The dimension of 
these parameters increases as the sample size increases so that a less complex function can asymptotically approximate the original 
non-parametric function arbitrarily well.

The utility function is approximated using a Bernstein polynomial of order 𝐿𝑢 ,

𝑢(�̃�) =
𝐿𝑢∑
𝑙=0

𝜃𝑢𝑙 ⋅𝐵𝑙,𝐿𝑢
(�̃�) (11)

with the 𝑙𝑡ℎ basis function denoted as 𝐵𝑙,𝐿𝑢
(�̃�) =

(𝐿𝑢
𝑙

)
⋅ �̃�𝑙 ⋅ (1 − �̃�)𝐿𝑢−𝑙 . As 𝐿𝑢 →∞, the Bernstein polynomial will converge uniformly 

to the continuous function 𝑢(�̃�) with 𝜃𝑢
𝑙
= 𝑢( 𝑙

𝐿𝑢
).22 We set 𝐿𝑢 = 3 (4) when 𝑇 = 200 (2000).

Further, we approximate the distribution function using a mixture of normal distributions:

𝐹𝑖(�̃�𝑖) ≈
𝐿𝐹∑
𝑙=1

𝜃𝑃𝑟
𝑙 ⋅Φ

( �̃�𝑖 − 𝜃𝜇
𝑙

𝜃𝜎
𝑙

)
, (12)

where Φ(⋅) is the C.D.F. of the standard normal distribution. Each distribution indexed by 𝑙 has a mean of 𝜃𝜇
𝑙

and a standard deviation 
of 𝜃𝜎

𝑙
. As the number of mixing distributions 𝐿𝐹 →∞, the mixture of these distributions can effectively approximate any continuous 

distribution with high accuracy (Chen, 2007). In our estimation, we find that 𝐿𝐹 = 2 performs well.

21 For some intuition, as Var(�̃�𝑖) decreases, player 𝑖 tends to choose the action with a higher expected utility more frequently. When Var(�̃�𝑖) → 0, player 𝑖 determin-

istically selects the action that maximizes the expected utility. Conversely, as Var(�̃�𝑖) →∞, player 𝑖 randomizes each action with equal probability.
22 In a large sample with a sufficiently high order, this property could be exploited to impose regular restrictions on the utility function, such as strict monotonicity 

and concavity, which can improve the performance of the estimator (Compiani, 2022). We, however, do not utilize this property in our analysis due to a limited 
12

sample size and a relatively low order.
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Let 𝜃 = (𝜃𝑢′ , 𝜃𝑃𝑟′ , 𝜃𝜇′ , 𝜃𝜎′ )′ denote the vector of unknown parameters in both the utility function and the distribution function. We 
estimate these parameters using the equilibrium correspondence approach (Goeree et al., 2020). In particular, given 𝜃, we obtain the 
approximated utility and distribution functions and then solve for each player’s QRE choice probability, denoted as 𝑝𝑄𝑅𝐸

𝑖 (�̃�|𝜃), using 
Equation (4). In the matching pennies game represented in Table 1, there exists a unique QRE for all �̃�. In applications with multiple 
QRE, the analyst has to select an equilibrium selection mechanism. Given 𝑝𝑄𝑅𝐸

𝑖 (�̃�|𝜃), the unknown parameters 𝜃 are estimated by 
maximizing the following log-likelihood function:

𝐿𝐿𝑄𝑅𝐸 =max
𝜃

2∑
𝑖=1

𝑇∑
𝑡=1

{
1(𝑎𝑖,𝑡 = 0) ⋅ log[𝑝𝑄𝑅𝐸

𝑖 (�̃�𝑡|𝜃)] + 1(𝑎𝑖,𝑡 = 1) ⋅ log[1 − 𝑝𝑄𝑅𝐸
𝑖 (�̃�𝑡|𝜃)]}. (13)

4.2.2. Testing

We exploit the over-identification result in Proposition 2 to test QRE. First, given 𝑝𝑄𝑅𝐸
𝑖 (�̃�|𝜃), we obtain the difference in expected 

utilities for player 𝑖 under the QRE restriction, which we denote as 𝐸𝑈𝑖(�̃�𝑖, 𝑝
𝑄𝑅𝐸
−𝑖 (�̃�𝑖|𝜃)). To test QRE, we consider a general model 

that explicitly allows each player 𝑖 to exhibit non-QRE behavior with the following choice probability:

𝑝𝑁𝑜𝑛−𝑄𝑅𝐸
𝑖 (�̃�|𝜃, 𝛾𝑖) =

{
𝐹𝑖[𝐸𝑈𝑖(�̃�𝑖, 𝑝

𝑄𝑅𝐸
−𝑖 (�̃�|𝜃))] = 𝑝𝑄𝑅𝐸

𝑖 (�̃�|𝜃) if �̃� ∉ M̃

𝐹𝑖[𝐸𝑈𝑖(�̃�𝑖, 𝑝
𝑄𝑅𝐸
−𝑖 (�̃�|𝜃)) + 𝛾𝑖(�̃�)] if �̃� ∈ M̃

. (14)

M̃ is a subset of the support for �̃� = (�̃�1, �̃�2)′. When �̃� ∉ M̃, Equation (14) states that player 𝑖 behaves according to QRE. When 
�̃� ∈ M̃, Equation (14) permits non-QRE behavior. The bias term 𝛾𝑖(�̃�) captures the degree of player 𝑖’s departure from QRE in the 
metric of expected utility.

The specification of Equation (14) follows directly from Proposition 2. In particular, 𝛾𝑖(�̃�) can be alternatively interpreted as the 
difference between the quantile function identified by observations in M̃ as opposed to the one obtained by observations not in M̃. 
As in Proposition 2, QRE implies that 𝛾𝑖(�̃�) = 0 and we test this restriction.

To ease the estimation burden, we consider a linear specification of 𝛾𝑖(�̃�).

𝛾𝑖(�̃�) = 𝛾𝑖,0 + 𝛾𝑖,1�̃�𝑖 + 𝛾𝑖,2�̃�−𝑖. (15)

We set M̃ = [0.2, 0.85]2, ensuring that approximately 50% of the observations fall within M̃ and the rest fall outside of M̃. The model 
and bias parameters are estimated by MLE:

𝐿𝐿𝑁𝑜𝑛−𝑄𝑅𝐸 =max
𝜃,𝛾

2∑
𝑖=1

𝑇∑
𝑡=1

{
1(𝑎𝑖,𝑡 = 0) ⋅ log[𝑝𝑁𝑜𝑛−𝑄𝑅𝐸

𝑖 (�̃�𝑡|𝜃, 𝛾𝑖)] + 1(𝑎𝑖,𝑡 = 1) ⋅ log[1 − 𝑝𝑁𝑜𝑛−𝑄𝑅𝐸
𝑖 (�̃�𝑡|𝜃, 𝛾𝑖)]}. (16)

The test of QRE is equivalent to testing whether 𝛾 = (𝛾 ′1, 𝛾
′
2)

′ = 0. The latter can simply be performed by the standard likelihood 
ratio test with the test statistic 2(𝐿𝐿𝑁𝑜𝑛−𝑄𝑅𝐸 −𝐿𝐿𝑄𝑅𝐸 ). Under the QRE hypothesis, this statistic follows an asymptotic Chi-squared 
distribution with the degree of freedom given by the dimension of 𝛾 (i.e., 6).

Test of quantal response behavior for each player Proposition 2 can also be exploited to test the hypothesis that player 𝑖 quantal 
responds to player −𝑖’s choice probability. This test focuses on the choice of each individual player rather than their joint behavior. 
To perform such a test, we consider the empirical payoff approach (Goeree et al., 2020) and first non-parametrically estimate each 
player’s choice probability in a reduced form:

�̂�𝑖(�̃�) =
exp[

∑𝐿
𝑙=0(

∑𝑙
ℎ=0 �̂�𝑖,𝑙,ℎ ⋅ �̃�

ℎ
1 ⋅ �̃�

𝑙−ℎ
2 )]

1 + exp[
∑𝐿

𝑙=0(
∑𝑙

ℎ=0 �̂�𝑖,𝑙,ℎ ⋅ �̃�
ℎ
1 ⋅ �̃�

𝑙−ℎ
2 )]

. (17)

Equation (17) considers a Logit probability with a non-parametric specification for the index value. This non-parametric index is 
approximated by a high order polynomial. In the estimation, we find that an order of 𝐿 = 3 performs well.

We reconsider Equation (14) but now we replace 𝑝𝑄𝑅𝐸
−𝑖 (�̃�|𝜃) with the other player’s empirical choice probability �̂�−𝑖(�̃�). It leads 

to the following choice probability for player 𝑖:

𝑝𝑁𝑜𝑛−𝑄𝑅
𝑖 (�̃�|𝜃𝑖, 𝛾𝑖) =

{
𝐹𝑖[𝐸𝑈𝑖(�̃�𝑖, �̂�−𝑖(�̃�))] if �̃� ∉ M̃

𝐹𝑖[𝐸𝑈𝑖(�̃�𝑖, �̂�−𝑖(�̃�)) + 𝛾𝑖(�̃�)] if �̃� ∈ M̃
. (18)

Equation (18) explicitly permits non-quantal response behavior and the bias parameters 𝛾𝑖 can be consistently estimated by MLE:

𝐿𝐿𝑁𝑜𝑛−𝑄𝑅
𝑖 =max

𝜃𝑖,𝛾𝑖

𝑇∑
𝑡=1

{
1(𝑎𝑖,𝑡 = 0) ⋅ log[𝑝𝑁𝑜𝑛−𝑄𝑅

𝑖 (�̃�𝑡|𝜃𝑖, 𝛾𝑖)] + 1(𝑎𝑖,𝑡 = 1) ⋅ log[1 − 𝑝𝑁𝑜𝑛−𝑄𝑅
𝑖 (�̃�𝑡|𝜃𝑖, 𝛾𝑖)]}. (19)

Therefore, the null hypothesis of player 𝑖’s quantal response behavior can be assessed by testing whether 𝛾𝑖 = 0, which is performed 
by the standard likelihood ratio test.

Similar to the above test of quantal response behavior at the participant level, the empirical payoff approach can also be exploited 
13

to estimate model primitives and test the QRE hypothesis. This approach is computationally efficient since it first estimates the 
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Table 3

Rejection rates of the over-identification test of QRE (QRE data).

Symmetric Distribution Asymmetric Distribution

Significance Level 𝛼 = 0.1 𝛼 = 0.05 𝛼 = 0.01 𝛼 = 0.1 𝛼 = 0.05 𝛼 = 0.01

𝑇 = 200

Known Utility & Known Error 12.4% 6.4% 1.0% 13.0% 7.4% 2.1%

Unknown Utility & Unknown Error 15.8% 8.7% 1.8% 23.9% 16.1% 6.1%

Linear Utility & Known Error 48.8% 35.7% 16.8% 28.6% 17.9% 7.6%

Known Utility & Logit Error 14.2% 7.5% 1.5% 65.4% 52.4% 29.3%

𝑇 = 2000

Known Utility & Known Error 11.1% 4.3% 0.3% 11.8% 6.1% 1.2%

Unknown Utility & Unknown Error 12.6% 6.7% 1.4% 13.2% 7.7% 1.7%

Linear Utility & Known Error 100.0% 100.0% 99.9% 97.2% 94.4% 84.9%

Known Utility & Logit Error 46.5% 33.2% 13.5% 100.0% 100.0% 100.0%

Notes: Rejection rates are calculated based on 1,000 Monte Carlo samples.

equilibrium choice probability and avoids having to solve QRE for each iteration of 𝜃. Moreover, in applications with multiple QRE, 
it does not require the analyst to impose an equilibrium selection mechanism but instead estimates the actual equilibrium observed 
in data. However, the empirical payoff approach produces a first-step estimation error which leads to inefficient estimates of model 
primitives.23 Moreover, since it requires the estimation of the multivariate choice probability function, the benefit due to dimension 
reduction—as described in Subsection 3.2—vanishes. For these reasons, we focus on the equilibrium correspondence approach to 
estimate model primitives and test QRE in this study.

4.2.3. Monte Carlo results

Data generated by QRE Table 3 presents the rejection rates of our test when the data is generated by QRE behavior, consequently 
representing the type-1 error. The rejection rates are calculated based on 1,000 Monte Carlo datasets. We compare the results for 
four specifications. The first assumes that the analyst knows the true utility and distribution functions (labeled as “Known Utility & 
Known Error”). It inserts these true functions into the estimation procedure and tests whether the vector 𝛾 = 0. Obviously, this model 
is infeasible in an actual dataset, but it serves as a natural benchmark for the comparison of other specifications.

Our framework that non-parametrically specifies both the utility and the distribution functions and tests QRE as in Subsection 
4.2.2 is labeled as “Unknown Utility & Unknown Error.” As shown in Table 3, when the sample size is moderate (i.e., 𝑇 = 2000 or 
10 participants per player role), the rejection rates align with the pre-specified significance levels, for both symmetric and asymmetric 
distributions. Consequently, our test achieves the desired type-1 error rate. When the sample size is small (i.e., 𝑇 = 200 or 1 participant 
per player role), our test tends to over-reject QRE due to small sample bias, especially when the error distribution is asymmetric.24

The remaining two specifications illustrate the consequences when either the utility function or the distribution function is mis-

specified. The third specification assumes that the analyst knows the true distribution function but mis-specifies the utility function 
as 𝑢𝑖(�̃�) = �̃� (labeled as “Linear Utility & Known Error”). The fourth specification assumes that the analyst knows the utility function 
but mistakenly considers the Logit choice probability (labeled as “Known Utility & Logit Error”). As shown in Table 3, when either 
the utility or the error distribution is mis-specified, the QRE hypothesis is substantially over-rejected with a moderate sample size 
(i.e., 𝑇 = 2000). In most scenarios, the rejection rates are close to 100%. This over-rejection issue is less of a concern in small samples 
(i.e., 𝑇 = 200). However, the mis-specification of either model primitives still leads to a substantially higher rejection rate than 
our proposed method (i.e., “Unknown Utility & Unknown Error”), except for the case of “Known Utility & Logit Error” under the 
symmetric distribution. In this scenario, even when the Logit formula is mis-specified, it correctly imposes the symmetry condition. 
In a small sample, this correct shape restriction leads to a rejection ratio that is slightly lower than our test.

Fig. 4 plots the averages of the estimated utility functions and the distribution functions across 1,000 Monte Carlo samples with 
their corresponding 90% confidence intervals. It shows that with a moderate sample size, the model primitives can be reliably and 
non-parametrically estimated.

Data generated by non-QRE behavior: symmetric iterative reasoning We next generate data according to the standard Level-𝑘 model to 
assess the power of our test to reject an incorrect hypothesis; that is, the type-2 error. Table 4 presents the rejection rates when each 
player has the same level of sophistication in their reasoning (i.e., symmetric Level-𝑘). Specifically, when 𝑇 = 2000, the test obtains 
a rejection rate of almost 100% for any error distribution and any level of iterative reasoning. This suggests that the proposed testing 

23 To deal with the first-step estimation error in the test of quantal response behavior, we input the true value of 𝑝𝑖(𝐦) in the Monte Carlo exercise. In the actual 
experiment, we assume away the first-step error. This is because the first-step estimates choice probabilities at the population level, which are based on a substantially 
larger sample size than the second step that tests model primitives at the participant level.
24 The over-rejection of QRE in small samples is akin to the well-known problem of over-fitting. In particular, the general choice probability structure in Equation (14)

includes the bias parameter 𝛾 . When QRE holds, these parameters are unnecessary to explain players’ behavior. However, if the sample size is small, these parameters 
would fit idiosyncratic sample noise. This over-fitting problem then translates to the over-rejection of QRE. Note that the benchmark specification (“Known Utility & 
14

Known Error”) also exhibits a comparable over-rejection problem in small samples.
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Fig. 4. Estimates of the utility function and the distribution function.

procedure possesses the power to reject an incorrect null hypothesis with a moderate sample size. When the sample size is small 
(i.e., 𝑇 = 200), the test’s performance crucially depends on the level of iterative reasoning. In cases where players are not sufficiently 
sophisticated (i.e., level-2 or below), our test exhibits lower rejection rates compared to the benchmark “Known Utility & Known 
Error,” and these rates fall below 50%. Intuitively, the choice probabilities of low-level players exhibit weak dependence on �̃�. For 
instance, a level-1 player’s decision is independent of the other player’s monetary reward. In small samples, this limited dependence 
on �̃� could lead to imprecise estimates and reduce the power of our test. In contrast, when players are more sophisticated (i.e., 
level-3), our test rejects the incorrect null hypothesis of QRE almost certainly, regardless of the shape of the error distribution.

Data generated by non-QRE behavior: asymmetric iterative reasoning Our final exercise considers players with heterogeneous levels of 
sophistication in their reasoning process (i.e., asymmetric Level-𝑘) and studies the performance of the test for each individual player’s 
quantal response behavior. Table 5 presents the test results.

In this exercise, Player 1 has the ability to perform an additional step of iterative reasoning compared to Player 2. Therefore, 
the quantal response function in Equation (3) holds for Player 1 and the rejection ratio for the test of this player’s quantal response 
behavior should be close to the pre-specified significance level. As shown in Table 5, the rejection rates align with the desired type-1 
error rate with a moderate sample size (i.e., 𝑇 = 2000). In a small sample (i.e., 𝑇 = 200), the test tends to over-reject the hypothesis 
of Player 1’s quantal response behavior due to small sample bias.

Player 2, on the other hand, is characterized by a lower level in their iterative reasoning and does not quantal respond to Player 
1’s choice probability. Furthermore, players’ joint behaviors violate QRE. Therefore, our test should frequently reject two incorrect 
null hypotheses: (i) quantal response behavior for Player 2, and (ii) QRE. As shown in Table 5, the rejection rates for these two tests 
are consistently close to 100% across different sample sizes and error distributions. These results demonstrate the high statistical 
power of our test.

5. Empirical application: an experimental study

Our empirical application focuses on the matching pennies game as presented in Table 1 and maintains the same structure as 
Goeree and Holt (2001). In a previous study of this game, Aguirregabiria and Xie (2021) do not reject quantal response behavior for 
15

the row player using the data from Goeree and Holt (2001). Moreover, in a generalized 3 × 3 matching pennies game, Melo et al. 
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Table 4

Rejection rates of the over-identification test of QRE (symmetric level-𝑘 data).

Panel A: 𝑇 = 200

Symmetric Distribution Asymmetric Distribution

Significance Level 𝛼 = 0.1 𝛼 = 0.05 𝛼 = 0.01 𝛼 = 0.1 𝛼 = 0.05 𝛼 = 0.01

Level-1 Reasoning Behavior

Known Utility & Known Error 100.0% 100.0% 100.0% 89.2% 82.5% 62.1%

Unknown Utility & Unknown Error 62.0% 49.3% 25.9% 36.8% 26.0% 10.4%

Level-2 Reasoning Behavior

Known Utility & Known Error 100.0% 100.0% 100.0% 100.0% 99.9% 99.3%

Unknown Utility & Unknown Error 47.0% 35.5% 17.6% 80.5% 70.2% 47.4%

Level-3 Reasoning Behavior

Known Utility & Known Error 100.0% 100.0% 100.0% 100.0% 99.7% 98.7%

Unknown Utility & Unknown Error 100.0% 100.0% 100.0% 99.9% 99.6% 96.8%

Panel B: 𝑇 = 2000

Symmetric Distribution Asymmetric Distribution

Significance Level 𝛼 = 0.1 𝛼 = 0.05 𝛼 = 0.01 𝛼 = 0.1 𝛼 = 0.05 𝛼 = 0.01

Level-1 Reasoning Behavior

Known Utility & Known Error 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Unknown Utility & Unknown Error 100.0% 100.0% 99.9% 99.3% 98.3% 94.1%

Level-2 Reasoning Behavior

Known Utility & Known Error 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Unknown Utility & Unknown Error 99.3% 98.6% 94.9% 100.0% 100.0% 100.0%

Level-3 Reasoning Behavior

Known Utility & Known Error 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Unknown Utility & Unknown Error 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Table 5

Rejection rates of the over-identification test of QRE (asymmetric level-𝑘 data).

Panel A: 𝑇 = 200

Symmetric Distribution Asymmetric Distribution

Significance Level 𝛼 = 0.1 𝛼 = 0.05 𝛼 = 0.01 𝛼 = 0.1 𝛼 = 0.05 𝛼 = 0.01

Player 1 is Level-2 Reasoner & Player 2 is Level-1 Reasoner

Test of QRE 97.8% 96.2% 88.5% 96.8% 91.9% 80.4%

Test of Quantal Response for Player 1 15.7% 8.8% 1.6% 16.6% 8.1% 1.6%

Test of Quantal Response for Player 2 99.9% 99.9% 99.9% 100.0% 99.9% 98.8%

Player 1 is Level-3 Reasoner & Player 2 is Level-2 Reasoner

Test of QRE 100.0% 100.0% 100.0% 98.7% 96.8% 90.2%

Test of Quantal Response for Player 1 19.4% 11.1% 2.4% 19.9% 12.5% 3.0%

Test of Quantal Response for Player 2 100.0% 100.0% 100.0% 96.1% 93.9% 82.4%

Panel B: 𝑇 = 2000

Symmetric Distribution Asymmetric Distribution

Significance Level 𝛼 = 0.1 𝛼 = 0.05 𝛼 = 0.01 𝛼 = 0.1 𝛼 = 0.05 𝛼 = 0.01

Player 1 is Level-2 Reasoner & Player 2 is Level-1 Reasoner

Test of QRE 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Test of Quantal Response for Player 1 12.5% 6.8% 1.2% 13.3% 6.9% 1.4%

Test of Quantal Response for Player 2 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Player 1 is Level-3 Reasoner & Player 2 is Level-2 Reasoner

Test of QRE 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Test of Quantal Response for Player 1 12.6% 7.0% 2.2% 14.1% 8.6% 2.1%

Test of Quantal Response for Player 2 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
16
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Fig. 5. Matching pennies game – experimental implementation.

(2019) do reject QRE at the population level, but cannot reject quantal response behavior at the participant level for more than 50% 
of participants.

5.1. Experimental design

Our design closely follows the Monte Carlo exercise in Section 4. In particular, we exogenously varied two variables, 𝑚1 and 𝑚2, 
that directly enter the utility function, one for each player. These variables were unique combinations drawn uniformly from a discrete 
set of 20 values, M = {10, 12, 14, ..., 48}. We randomized the order of these combinations for a given experiment session. Each session 
was comprised of 20 participants who were allocated to two separate matching groups and player roles were assigned. Throughout 
the experiment, each participant maintained their player role and remained in their group. To ensure efficient data collection, each 
group played, in total, 200 matching pennies games with varying monetary payoffs and with random re-matching to mute potential 
order effects. Thus, in a given experiment session with 20 participants we collected data using |M|2 = 202 = 400 unique monetary 
payoff combinations.

Fig. 5 visualizes the experimental implementation of the bimatrix matching pennies game, where the variables 𝑚1 and 𝑚2 were 
exogenously varied and changed in each round (in this example, 𝑚1 = 22 and 𝑚2 = 18). To create a more natural and intuitive 
interface, we displayed one 2 × 2 matrix for each player separately as in Halevy et al. (2023). The first matrix represents player 1’s 
monetary payoffs and the second matrix represents player 2’s monetary rewards, respectively.

To improve participants’ experience and to assist in selecting an action, we implemented a highlighting tool that uses yellow 
color. When a participant moves their mouse over a row in their matrix (“Your Earnings”), the action is highlighted in yellow color in 
both matrices: a row in their matrix, and a column in the opponent’s matrix (“Opponent’s Earnings”). By left clicking the mouse over 
a row it remains highlighted, and participants can un-highlight it by clicking their mouse again or clicking another row. Similarly, 
when participants move their mouse over a row that corresponds to an action of the opponent in “Opponent’s Earnings,” the row is 
highlighted in yellow and the corresponding column is highlighted in yellow in “Your Earnings.” Clicking the mouse over the row 
keeps it highlighted, and clicking it again (or clicking another action) unhighlights it.25

We conducted the experiment with students enrolled at the University of Vienna in December 2022. In total, 100 participants were 
recruited from Vienna Center for Experimental Economics’ (VCEE) pool using ORSEE (Greiner 2015). No participant was allowed to 
participate in more than one session.

After reading the instructions, participants had to correctly answer three comprehension questions before starting the first task. 
If participants made a mistake in answering a quiz question, they had to answer it correctly in order to move to the next question. 
The experiment was programmed in oTree (Chen et al. 2016). For each participant, we randomly selected one of the 200 matching 
pennies games that they had played, and rewarded them based on the earnings in this selected game. This design mutes potential 
hedging incentives. The average participant earned € 19.18 ≈ $20.50, including a show-up payment of € 5, in a session that typically 
lasted around 70 minutes.

5.2. Experimental data and results

Table 6 reports the estimated coefficients from a reduced form Logit regression, where we regress player 𝑖’s choice probability of 
action 0 on 𝑚1 and 𝑚2. As would be expected, an increase of 𝑚𝑖 strictly increases the expected utility of 𝑎𝑖 = 0 for player 𝑖, holding the 
17

25 The interactive experimental interface can be accessed anytime upon request. Example screenshots can be found in the appendix.
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Table 6

Reduced form logit regression of player 𝑖’s choice prob-

ability function.

Player 1 Player 2

𝑚1
0.027∗∗∗ −0.050∗∗∗
(0.002) (0.002)

𝑚2
0.028∗∗∗ 0.052∗∗∗
(0.002) (0.002)

Constant
−1.016∗∗∗ −0.223∗∗∗
(0.079) (0.077)

Log-likelihood -6339.57 -6184.61

Observations 10,000

Notes: ∗ , ∗∗ , and ∗∗∗ represent significant at 10%, 5%, 1% 
significance levels, respectively.

Table 7

Chi-square statistic and 𝑝-value of the test of QRE (pop-

ulation level).

Linear Utility & Logit Error
𝜒2 = 245.68
𝑝 < 0.0001

Unknown Utility & Logit Error
𝜒2 = 181.53
𝑝 < 0.0001

Linear Utility & Unknown Error
𝜒2 = 94.74
𝑝 < 0.0001

Unknown Utility & Unknown Error
𝜒2 = 93.81
𝑝 < 0.0001

other player’s choice probability constant. Consequently, the rise of 𝑚𝑖 increases 𝑝𝑖(𝑚𝑖, 𝑚−𝑖). This effect is known as the own-payoff 
effect and is a common feature in experimental studies of matching pennies games (Ochs, 1995; Goeree et al., 2003). This own-payoff 
effect is also salient and highly significant in our dataset. Moreover, if a player knows that the other player experiences an own-payoff 
effect, the structure of the matching pennies game implies that player 1’s choice probability of action 0 increases in 𝑚2 (while player 
2’s probability decreases in 𝑚1). Table 6 shows that such effect of other-payoff is also sizable and statistically significant.

Our analysis starts with testing QRE and estimating model primitives under the condition of QRE at the population level. We then 
test the hypothesis of quantal response behavior for each participant in our experiment. The estimation and testing procedures follow 
the process described in Subsection 4.2.

Population level analysis of the heterogeneous QRE We allow each participant in the experiment to have a heterogeneous error dis-

tribution but assume that they share the same utility function. In this scenario, QRE at the population level can be described by a 
representative player whose error distribution is non-parametrically specified (Golman, 2011). Due to this interpretation, one can 
view all participants with the same player role as a single participant or player who makes 𝑇 = 50 ×200 = 10, 000 decisions. Notably, 
this treatment of heterogeneous QRE that allows different error distributions nests the heterogeneous Logit QRE (Rogers et al., 2009; 
Golman, 2012) as a special case.

Table 7 presents the results of the test of QRE for four different specifications. The first one follows the standard procedure in the 
literature, assuming the utility is given by the monetary reward (i.e., risk-neutral participants with perfect perception) and the Logit 
choice probability. Accordingly, this specification is labeled as “Linear Utility & Logit Error.” The second and third specifications 
relax one of the two restrictions and only allow one of the functions to be unknown to the analyst. They are referred to as “Unknown 
Utility & Logit Error” and “Linear Utility & Unknown Error.” The last specification is the one proposed in this study—it allows both 
functions to be unobserved by the analyst (i.e., “Unknown Utility & Unknown Error”). In each specification, all unknown functions 
are non-parametrically specified.

As shown in Table 7, the null hypothesis of QRE is rejected in our data under all specifications. However, the results also deliver 
an important message: when fewer restrictions are imposed on the utility and the distribution functions, QRE becomes more difficult 
to reject. This is reflected in the decreasing statistic of the likelihood ratio test.

Notably, the test of QRE examines whether QRE perfectly matches the actual choice probability 𝑝𝑖(⋅). Therefore, the population-

level rejection of QRE should not be mistakenly interpreted as contradicting the common finding in the literature that QRE generally 
fits the data well (Camerer, 2003; Crawford et al., 2013). In particular, the literature usually evaluates QRE based on whether its 
prediction is sufficiently close to the true choice probability. Since we non-parametrically identify the model primitives under QRE, 
we can also evaluate how close QRE is to the actual 𝑝𝑖(⋅) under different specifications. To perform such a comparison, we consider 
18

the following measure of normalized log-likelihood:
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Fig. 6. Model fitness.

Normalized Log-Likelihood = 𝐿𝐿Model −𝐿𝐿Random

𝐿𝐿Sample −𝐿𝐿Random , (20)

where 𝐿𝐿Model is the log-likelihood value for the corresponding model and 𝐿𝐿Random is evaluated when each action is assumed to 
be chosen with equal probability, representing the lower bound that any model should beat. 𝐿𝐿Sample is calculated using the smooth 
non-parametric reduced form estimates �̂�𝑖(𝐦), as shown in Equation (17). By construction, it represents the maximum value of log-

likelihood that any model could reach. As sample size grows, our test will reject QRE as long as it does not achieve a perfect fit (of 
100%). In contrast, our estimation procedure allows us to evaluate the closeness of QRE to the perfect fit.

Fig. 6 plots the normalized log-likelihood values for different model specifications. As previously noted, even the simplest QRE 
(i.e., with Logit error and linear utility) fits the data substantially better than NE with a non-parametric utility function. This is because 
NE only predicts an other-payoff effect, while QRE predicts both own-payoff and other-payoff effects (Table 6). Importantly, when 
the error distribution is non-parametrically specified, the model fit substantially increases beyond 90% (the right two bars on Fig. 6). 
These specifications can be viewed as a population level analysis of the heterogeneous QRE (Golman, 2011). As a benchmark, existing 
approaches which impose the distributional assumption perform worse. Finally, Fig. 7 plots the same measure for an out-of-sample 
procedure that estimates model primitives for 50% of participants and predicts on the remaining participants. Here again, the two 
specifications with non-parametric error distributions achieve the best of out-of-sample fit. Consequently, QRE explains much of the 
variation in participants’ behavior in this game.

In Fig. 8, we present the non-parametric estimates of model primitives under QRE. We plot the estimated utility function with 
a 90% confidence interval (black dotted lines) and compare it with the linear utility assumption (blue line). Our estimates suggest 
that participants are risk neutral when the monetary payoff is low or moderate. Only when the reward is very high (i.e., above € 40 
≈ $43) do we find utility curvature consistent with risk aversion to be significant at the 10%-level.

Fig. 9 plots the estimated P.D.F. for the error distribution with a 95% confidence interval (black dotted lines) and compares it 
with the logistic distribution with the same variance (blue line). This illustrates the strong rejection of the Logit choice probability. 
Compared to the logistic distribution, participants tend to make errors of smaller magnitude. Moreover, the estimated distribution 
has a heavier tail, suggesting that participants also make larger errors with non-negligible probability. In contrast, there is a smaller 
probability of moderate mistakes.

While the estimated P.D.F. of �̃�𝑖 appears symmetric, it is not symmetric around 0. In particular, the estimate of 𝑚𝑒𝑎𝑛(�̃�𝑖) is 0.080 
and is highly significant at the 1%-level, with a standard error of 0.020. Given the estimated utility function, this estimate of 𝑚𝑒𝑎𝑛(�̃�𝑖)
suggests that participants tend to over-estimate the reward of the action presented at the top of the screen by around € 3 ≈ $3.20, 
which is approximately 6% of the maximum reward. Our non-parametric estimate is able to recover this sizable position effect, which 
is usually assumed to be absent in existing applications of QRE.

Test of quantal response behavior at the participant level Our second analysis allows both the utility function and the error distribution 
to be heterogeneous across participants. We aim to test whether each participant exhibits quantal response behavior with respect 
to the other player’s actual choice probabilities. If this hypothesis holds for each participant, we could interpret the data as being 
19

consistent with QRE featuring heterogeneity in both the utility function and the distribution function.
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Fig. 7. Out of sample fitness.

Fig. 8. Estimated utility function.

Fig. 10 presents the empirical C.D.F. for the 𝑝-value of the test statistic, with a vertical line that represents statistical significance 
at the 5%-level. Therefore, the intersection of the empirical C.D.F. and the vertical line shows the fraction of participants for whom 
quantal response behavior is rejected at the 5%-level.

Similar to the results at the population level, the test highlights a general trend: the fewer restrictions imposed on the utility 
and the error distribution, the more likely it is that QRE holds in the data. Under the assumption of a risk neutral utility function 
and a logistically distributed error, quantal response behavior is rejected for 70% of participants. When only one of the two model 
primitives is restricted, the null hypothesis is rejected for about 50% of participants. In contrast, with unknown and non-parametric 
specifications of both functions, quantal response behavior is rejected for only 30% of participants. Notably, this test at the participant 
level is conducted with a sample size of 𝑇 = 200, which may introduce small sample bias as described in our Monte Carlo results (i.e., 
Table 5). Since this small sample bias tends to over-reject the quantal response hypothesis, rather than reducing the power to reject 
20

incorrect hypotheses, these results are more supportive of quantal response behavior than previous methods.
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Fig. 9. Estimated P.D.F. for �̃�𝑖 .

Fig. 10. Empirical C.D.F. of the 𝑝-value of the test of quantal response behaviors.

In summary, the quantal response hypothesis has a satisfactory statistical fit when allowing for sufficiently flexible and heteroge-

neous utility and error distributions. However, when strong assumptions in terms of the functional form or homogeneity are imposed, 
QRE is strongly rejected. These results emphasize the importance of a flexible and unknown specification of all model primitives. 
With this specification, the identification results and the testable implication derived in this paper are particularly useful.

6. Conclusion

This paper studies the falsifiability and identification of QRE when both the utility and the error distribution are non-parametric 
functions. Making use of cross-game variation, we first show that the error distribution and the utility function are non-parametrically 
21

over-identified. This over-identification result implies a straightforward testing procedure for QRE. The Monte Carlo experiment 
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suggests that our test has sufficient power to reject a false hypothesis. Moreover, when QRE holds in the data, our estimation procedure 
can reliably recover both the utility and the distribution functions non-parametrically.

As shown by Golman (2011), the non-parametric error specification can be viewed as a population level fit of QRE with heteroge-

neous error distributions across participants. Previous studies have not exploited this interpretation because of a lack of identification 
results. This paper fills this gap by providing a means to fit heterogeneous QRE at the population level. In an experimental study of 
the matching pennies game, we find that QRE with a non-parametric error distribution fits the data substantially better than previous 
methods, both in-sample and out-of-sample. This suggests substantial heterogeneity in error distributions in our sample. Moreover, 
at the participant level, with a heterogeneous and non-parametric specification of the utility and the error distribution, the quantal 
response hypothesis cannot be rejected for a majority of participants. However, it is highly rejected with strong assumptions on 
functional form or homogeneity.

Our framework’s weak assumptions on the monetary payoff structures enable an analyst to test QRE in a wide class of games, 
accommodating their various research objectives. For instance, while this paper focuses on the matching pennies game (Table 1), our 
method is equally applicable to other types of games such as coordination games (Table 2). An important feature of our approach 
is that it enables an analyst to test the validity of QRE both within and across game types. For instance, the analyst could design an 
experiment where the payoff structure M is a union of Tables 1 and 2, this design allows for testing whether QRE jointly holds in 
both matching pennies and coordination games.

Our results build on the invariance assumption that each player’s error distribution remains unchanged across games. Conse-

quently, we focus on games with fixed number of players and actions. When players have different action sets across games, the 
joint distribution of errors across actions will vary and our results do not apply. However, with some additional restrictions, it is 
possible to generalize our results. For instance, consider a series of 2 × 2 games and another series of 3 × 3 games, with the com-

mon restriction that errors are i.i.d. across actions (Goeree et al., 2020). Based on the results in this paper, the analyst could first 
non-parametrically estimate the utility function and the marginal error distribution using data from the 2 × 2 games. Under the i.i.d. 
restriction, these non-parametric estimates then determine the set of predicted choice probabilities under QRE for the 3 × 3 games.26

This result could then be used to test QRE by testing whether the set of predicted probabilities contains the true choice probability. 
In a semi-parametric specification, Xie (2018) shows that the above variations in the action sets could provide extra information to 
test BNE, and equivalently QRE.
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