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1 Introduction

In many strategic settings, choice behaviour systematically deviates from the canonical

solution concept of Nash Equilibrium (NE). These deviations have been documented

using both experimental data from individual decision makers (Goeree and Holt, 2001)

and field data of firms and managers (Goldfarb and Xiao, 2011; Aguirregabiria and Jeon,

2020). To address some of the failures of NE, the Quantal Response Equilibrium (QRE)

of McKelvey and Palfrey (1995) has been proposed as an alternative equilibrium concept.

QRE extends the random utility framework to strategic settings, where the expected util-

ity of each action is randomly perturbed. This “error” can be interpreted as either a noisy

decision process or private information on the part of the player. QRE is defined as a

fixed point in the space of the choice probabilities implied by this error. By incorporat-

ing decision errors into strategic settings, yet preserving the equilibrium feature, QRE

makes predictions about behavior in games that reduce to NE as noise vanishes.

While QRE has successfully explained many deviations from Nash Equilibrium1 and

has become an important benchmark in game theory (Goeree et al., 2020), the empiri-

cal falsifiability of QRE requires assumptions by the analyst on the distribution of util-

ity. As long as utility errors are not i.i.d. across players’ actions, QRE can rationalize

any observed choice behaviour within a game (Haile et al., 2008). To ensure falsifi-

ability, the literature has developed two approaches. The first approach has imposed

additional restrictions on the distribution of random utility across actions and players,

yielding testable implications of QRE within repetitions of the same game. In particular,

it assumes that each players’ utility function is known, identical, and given by monetary

payoffs (henceforth, the known utility assumption).2 However, a formal statistical test

1For recent work on endogenizing QRE, see Friedman (2020), as well as on an axiomatic variant of
QRE, see Friedman and Mauersberger (2022). Allen and Rehbeck (2021) introduce non-expected util-
ity preference into QRE. For an order-theoretic approach to QRE and an application to coordination in
networks, see Hoelzemann and Li (2022).

2Two important examples of this approach are the regular QRE by Goeree et al. (2005) and the rank-
dependent choice equilibrium by Goeree et al. (2019). Each considers a restriction that is weaker than i.i.d.
errors.
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for QRE under these assumptions has not been derived.

In contrast, this paper follows a second approach that exploits the variation of players’

choices across games (or more accurately, versions of a game with variation in payoffs).

The idea of exploiting cross-game variation was first suggested by Haile et al. (2008)

and subsequently explored by Melo et al. (2019) who non-parametrically specify the

error distribution but still impose the known utility assumption. In comparison, Aguir-

regabiria and Xie (2021) consider a non-parametric utility function but impose that the

errors follow a known distribution (henceforth, the distributional assumption). In our

framework, each player’s utility and distribution of the random error are both unknown

non-parametric functions. Under the assumption that the error distribution remains un-

changed across games (henceforth, the invariance assumption), we derive a testable nec-

essary condition for QRE in any normal-form game with a finite number of players and

actions. We then show that both the utility and the distribution of the random pertur-

bation are non-parametrically (over)-identified under the hypothesis of QRE.3 This im-

plies a straight-forward statistical test for rejecting QRE which does not require repeated

choices from identical games. This test achieves ideal type-1 error rates and therefore

guards against over-rejection of QRE in sample sizes typical of economic experiments.

To apply QRE in an empirical study, it is important to relax both the known utility

and the distributional assumptions. If either is mis-specified, we show via a Monte-Carlo

exercise that tests of QRE can substantially over-reject in typical sample sizes from lab-

oratory studies. Mis-specification of the known-utility assumption – which essentially

restricts all participants to have a homogeneous risk-neutral utility function – is partic-

ularly problematic with type-1 error rates near 50% or higher on a purported 5% test.

In laboratory settings where QRE has been traditionally tested, heterogeneous small-

stakes risk aversion (as identified by Harrison and Cox (2008) among many others) thus

presents a serious empirical hurdle. An important contribution of this paper is to make

3Aguirregabiria and Xie (2021) only derive a semi-parametric identification result. Moreover, Goeree
et al. (2003) is an early attempt to relax the known utility assumption. However, they assume a parametric
utility function and impose the distributional restriction.
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laboratory tests of QRE robust to heterogeneous risk preferences and error distributions.

Commonly used distributional assumptions such as Logit and Probit impose strong shape

restrictions on the random perturbation, and are considered mainly due to their statistical

convenience. These distributional restrictions could be mis-specified, especially when

the analyst fits aggregate data that consists of heterogeneous participants.4 Again, in our

Monte-Carlo study we observe substantial over-rejection of QRE when the utility error

distribution is mis-specified. The known utility and distributional assumptions are even

more problematic in field data where the monetary payoff (e.g., profits) is usually unob-

served by the analyst and instead must be estimated. By considering a non-parametric

unknown utility function and error distribution, this paper unlocks the possibility of ap-

plying QRE to field data.5

Our proposed test of QRE follows from conditions on a player’s behaviour across

similar games that only vary in the magnitude of player-specific payoffs. For some intu-

ition, we describe our procedure in a common example of experimental economics: the

matching pennies game. Suppose that the analyst designs a series of 2×2 games where

the magnitude of player-specific payoffs varies. Under some regularity conditions, there

are multiple pairs of games such that the choice probabilities for player i must be the

same. Given any three such pairs, we derive an equality condition that QRE imposes on

the relative change in player −i’s choice probabilities across these games. This condition

is a testable implication of QRE that does not depend on any further assumptions on the

utility function or the error distribution. In games with more players and/or more actions,

the testable implication of QRE is a rank restriction on a matrix that solely depends on

player −i’s choice probabilities.

4In particular, suppose that all individuals’ errors follow the extreme type-1 distribution (i.e., Logit) but
differ in their sensitivity parameters. Golman (2011) show that the aggregate behavior could be described
by a representative player that will not behave according to the Logit formula. The actual error distribution
depends on the distribution of the sensitivity parameters.

5To give more detail, QRE has an identical mathematical structure as the Bayesian Nash Equilibrium
of an incomplete information game where private information is independent across players. The latter
framework is commonly estimated using field data, mainly in empirical industrial organization. Identifi-
cation results based on the latter framework have been obtained by Bajari et al. (2010), Liu et al. (2017),
and Xie (2022).

3



Our identification results provide a means to implement this test in practice. In par-

ticular, we show that both the utility function and the distribution of the random pertur-

bation are non-parametrically over-identified. Consequently, the testable implication of

QRE can be viewed as an over-identification test for an additive reduced form bias term

into each player’s expected utility function. This bias term is interpreted as the departure

from QRE and is equal to zero if and only if QRE is true. Therefore, testing QRE can be

easily conducted via a null hypothesis test using existing econometric tools, such as the

likelihood ratio test. In small samples, additional power can be achieved by imposing a

semi-parametric functional form for utility, like CRRA, that allows risk-aversion to dif-

fer at the participant-level. Our Monte-Carlo simulation results suggest that our test is

well-powered and achieves the desired rejection rate in sample sizes typical of economic

experiments.

Our identification results also have an important implication for the estimation of

QRE. Specifically, our non-parametric specification can be viewed as a population level

fit of QRE which allows heterogeneous error distributions across subjects (Golman,

2011). This approach has not been exploited empirically because – even under the known

utility assumption – there is no previous identification result for a non-parametric error

distribution, only a test of QRE (Melo et al., 2019). The identification results in this

paper provide a means to fit heterogeneous QRE at the population level.

Finally, we conduct a laboratory experiment (N = 100) of the matching pennies game

to test QRE using our procedure. We demonstrate a substantial reduction in rejections

of QRE once the known utility and known distribution assumptions are eliminated, with

rejection rates dropping from 90% to 40% of participants. We also find that QRE with an

unknown error distribution fits the data substantially better than previous methods, both

in-sample and out-of-sample. These results highlight the importance of relaxing both the

known utility assumption and the distributional assumption in applied settings.

The rest of the paper proceeds as follows. Section 2 reviews QRE in 2× 2 games,
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and Section 3 presents the testable implication and identification results. Generalizations

to games with more players and/or more actions require extra notation, and are in the ap-

pendix. A Monte Carlo exercise is presented in Section 4 and the laboratory experiment

is discussed in Section 5. We conclude in Section 6. Proofs and other extensions are also

in the appendix.

2 QRE in 2×2 Games

Players are indexed by i ∈ {1,2} and −i represents the other player. Each player i simul-

taneously chooses an action, denoted by ai, from their action set Ai = {0,1}. Moreover,

let a = (ai,a−i) ∈ A = Ai ×A−i be an action profile of this game. Player i’s utility of

a = (ai,a−i) is represented by πi(mi,ai,a−i).

The expression of the utility function πi(mi,a) includes control variables mi. In field

data, such as the entry game estimated in empirical industrial organization, the control

variables mi could include market conditions and firm i’s characteristics. In experimental

data, mi could be a vector that consists of player i’s monetary reward for each action

profile. For instance, mi =
(
mi(ai = 0,a−i = 0),mi(ai = 1,a−i = 0),mi(ai = 0,a−i =

1),mi(ai = 1,a−i = 1)
)′, where mi(a) represents player i’s monetary payoff of the profile

a. Our general specification πi(·) allows the utility of the profile a to depend on the

entire vector mi. For instance, the utility depends not only on the monetary reward of

the chosen profile a, but also on the payoffs of other un-chosen profiles (i.e., reference-

dependent preference). We derive our key results under this general specification. The

experimental literature commonly restricts utility to depend only on received payoffs; for

instance, πi(mi,a) = u[mi(a)], where u(·) represents utility as a function of money. This

additional restriction eases estimation and we will exploit this restriction in our Monte-

Carlo exercise and experimental analysis. Finally, we assume that players know their

utility function πi(·) but the analyst does not.

Our objective is to derive a robust test of QRE without prior information about πi(·),
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and to identify πi(·) when QRE holds in the data. To achieve these objectives, we con-

sider a non-parametric specification of πi(·) under the following assumption.

Assumption 1. mi includes continuous variables. Moreover, πi(mi,ai,a−i) is bounded

and continuous in its continuous arguments.

In the above framework, exogenous variation of (mi,m−i) generates a series of dif-

ferent games. For instance, consider the matching pennies game illustrated in Table 1

that we use throughout the paper.6

Table 1: Monetary Payoff Matrix of Matching Pennies (m1 > 8, m2 > 8)

MP Player 2

0 1

Pl
ay

er
1 0

8
m1

16
8

1
m2

8
8

16

The numbers in each cell represent the monetary reward for the corresponding action

profile. The variables (m1,m2) are controlled by the analyst and vary across a series of

trials, generating the required variation to test QRE and to identify the model primitives.

Let p−i(m) denote player −i’s choice probability of action a−i = 1, in the game

with control variables m = (mi,m−i). Note that in strategic settings, a player’s choice

probability depends on all players’ control variables m = (mi,m−i). Given the above

choice probability, the expected utility of player i’s action ai is:

Eπi[mi,ai, p−i(m)] = πi(mi,ai,a−i = 0) · [1− p−i(m)]+πi(mi,ai,a−i = 1) · p−i(m).

QRE places an error distribution on this expected utility. Specifically, let εi(ai) denote

the error on player i expected utility of action ai. Consequently, player i will choose

6For simplicity, we only vary one action profile’s payoff for each player in this example. Our results
hold in general settings where the payoff of every action profile varies.
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ai = 1 if and only if the following condition holds:

Eπi[mi,ai = 1, p−i(m)]+ εi(ai = 1)≥ Eπi[mi,ai = 0, p−i(m)]+ εi(ai = 0)

⇔ εi(ai = 0)− εi(ai = 1)≤ Eπi[mi,ai = 1, p−i(m)]−Eπi[mi,ai = 0, p−i(m)]. (1)

To derive choice probabilities, let Fi(·) be a continuous and strictly increasing cumulative

distribution function (C.D.F.) of ε̃i = [εi(ai = 0)−εi(ai = 1)]. Importantly, Fi(·) is a non-

parametric function that is unknown to the analyst, but with the following assumption:

Assumption 2. Fi(·) is independent of (mi,m−i).

Assumption 2 is known as the invariance assumption and simply states that the dis-

tribution does not change over the variation in games. It is commonly maintained in

empirical applications of QRE, including formal tests of QRE (Goeree et al., 2020; Melo

et al., 2019; Aguirregabiria and Xie, 2021). In an extension offered in the appendix,

we relax this assumption by allowing Fi(·) to depend on player i’s own mi but to be

independent of the other player’s m−i.

Given Equation (1) and Fi(·), player i’s choice probability of action ai = 1 takes the

following form:

pi(m) = Fi[Eπi(mi,ai = 1, p−i(m))−Eπi(mi,ai = 0, p−i(m))]. (2)

QRE implicitly assumes that each player forms correct beliefs about other players’ choice

probabilities. Consequently, the choice probabilities satisfy a fixed-point condition under

QRE. We refer to this as the Global QRE condition:

Definition 1. The vector
(

pi(m), p−i(m)
)′ denotes the QRE choice probabilities if and

only if the following condition holds:

pi(m) = Fi[Eπi(mi,ai = 1, p−i(m))−Eπi(mi,ai = 0, p−i(m))],∀i and m. (3)
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By Brouwer’s fixed point theorem, any game has at least one QRE. Moreover, in

many games, there can exist multiple QREs.

3 Testable Implication of QRE and Identification Results

We now demonstrate that the QRE restrictions in Equation (3) can be tested by an analyst

who observes players’ choices. Moreover, we will demonstrate that the utility function

πi(·) and the distribution function Fi(·) are non-parametrically identified when QRE is

satisfied in the data. To derive the testable implication, we will work directly with each

player’s choice probability since these can be consistently estimated from the choice data

(i.e., we assume that pi(m) and p−i(m) are observed by the analyst). In practice, we will

show that this simplifying assumption can be relaxed to incorporate datasets for which

only a single choice is observed from each (m1,m2) pair (as in our experiment). For

notation, we use pure letters (e.g., mi) to denote random variables and add superscripts

to the letters (e.g., m1
i ) to denote their realizations.

3.1 Testable Implication of QRE

We begin by noting that since Fi(·) is strictly increasing, we can invert the QRE condi-

tions (3):

F−1
i [pi(mi,m−i)] = Eπi[mi,ai = 1, p−i(mi,m−i)]−Eπi[mi,ai = 0, p−i(mi,m−i)], ∀i.

(4)

Equation (4) contains all the model restrictions that are imposed on player i’s behav-

iors. Following Aguirregabiria and Magesan (2020) and Aguirregabiria and Xie (2021),

we consider any three realizations of m−i, denoted by m1
−i, m2

−i, and m3
−i. When

pi(mi,m1
−i) ̸= pi(mi,m2

−i), evaluating Equation (4) at the above three realizations im-
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plies:

F−1
i [pi(mi,m3

−i)]−F−1
i [pi(mi,m1

−i)]

F−1
i [pi(mi,m2

−i)]−F−1
i [pi(mi,m1

−i)]
=

p−i(mi,m3
−i)− p−i(mi,m1

−i)

p−i(mi,m2
−i)− p−i(mi,m1

−i)
, ∀mi. (5)

A complete derivation of Equation (5) is left to the appendix, however its intuition is

relatively simple. Variation of m−i will affect player −i’s utility and change their choice

probabilities p−i(·). In strategic settings, this change of p−i(·) would then have an impact

on player i’s choice probability. Suppose we fix mi so that player i’s utility of each action

profile remains unchanged. The only reason that pi(·) will vary with m−i is due to m−i’s

impact on p−i(·). Put differently, when only m−i varies, the relative change of pi(·)

reveals information about the relative change of p−i(·). For any three realizations of m−i,

it is therefore possible to cancel player i’s utility function and obtain the relationship as

shown by Equation (5).

Note that Equation (5) depends on the distribution function Fi(·). In previous work,

Aguirregabiria and Magesan (2020) and Aguirregabiria and Xie (2021) impose the dis-

tributional assumption (e.g., Logit) so that Fi(·) is known to the analyst. Under this

assumption, Equation (5) becomes a testable restriction of QRE. In contrast, our ob-

jective is to cancel Fi(·) and obtain a testable implication of QRE that is robust to any

distribution function.

To see how this is possible, we use an example of the matching pennies game depicted

in Table 1. In Figure 1, we solve each player’s QRE choice probabilities for a series of

different values of (m1,m2).7 In particular, m1 takes on two values: 10 (blue) and 16

(green) and we plot each player’s choice probability as a function of m2.

Consider a pair of games (realizations of (m1,m2)) that respectively lie on the blue

and green line. Since assumption 1 implies that pi(m1,m2) is continuous in both argu-

ments, there exist infinite pairs of games such that player 1’s choice probability remains

7For illustrative purposes only, our simulation simply assumes players’ utilities equal their monetary
payoffs (πi(mi,a) = mi(a)) and that F(·) takes a logistic functional form.
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Figure 1: Testable Implication of QRE

constant within pairs. Figure 1 (left panel) labels three such pairs that satisfy the condi-

tion of equal choice probability; for instance, p1(m1
1,m

1(l)
2 )= p1(m2

1,m
2(l)
2 ) for l = 1,2,3.

These three pairs, together with Equation (5), jointly imply the following:

F−1
i [pi(m1

i ,m
1(3)
−i )]−F−1

i [pi(m1
i ,m

1(1)
−i )]

F−1
i [pi(m1

i ,m
1(2)
−i )]−F−1

i [pi(m1
i ,m

1(1)
−i )]

=
p−i(m1

i ,m
1(3)
−i )−p−i(m1

i ,m
1(1)
−i )

p−i(m1
i ,m

1(2)
−i )−p−i(m1

i ,m
1(1)
−i )

|| ||
F−1

i [pi(m2
i ,m

2(3)
−i )]−F−1

i [pi(m2
i ,m

2(1)
−i )]

F−1
i [pi(m2

i ,m
2(2)
−i )]−F−1

i [pi(m1
i ,m

1(1)
−i )]

=
p−i(m2

i ,m
2(3)
−i )−p−i(m2

i ,m
2(1)
−i )

p−i(m2
i ,m

2(2)
−i )−p−i(m2

i ,m
2(1)
−i )

.

(6)

Due to the equal choice probability condition, the terms on both rows’ left-hand

sides in Equation (6) are equal, therefore, the terms on the right-hand sides are also

equal. Each element in Equation (6) has its corresponding representation in Figure 1. In

particular, each row in Equation (6) describes the mapping from the relative change of

player i’s choice probability (i.e., left panel in Figure 1) to the relative change of p−i(·)
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(i.e., right panel). Since the relative change of player −i’s choice probabilities can be

consistently estimated, this serves as a testable implication of QRE. This condition can

be visualized by the two similar triangles with sides equal to the change of player −i’s

choice probabilities.

We formally state the testable implication of QRE in Proposition 1:

Proposition 1. Under Assumptions 1–2, for any three pairs of realizations (mi,m−i)

that satisfy the following conditions:

Pair 1: realizations (m1
i ,m

1(1)
−i ) and (m2

i ,m
2(1)
−i ) such that pi(m1

i ,m
1(1)
−i )= pi(m2

i ,m
2(1)
−i ).

Pair 2: realizations (m1
i ,m

1(2)
−i ) and (m2

i ,m
2(2)
−i ) such that pi(m1

i ,m
1(2)
−i )= pi(m2

i ,m
2(2)
−i ).

Pair 3: realizations (m1
i ,m

1(3)
−i ) and (m2

i ,m
2(3)
−i ) such that pi(m1

i ,m
1(3)
−i )= pi(m2

i ,m
2(3)
−i ).

Given these pairs, QRE implies the following testable restriction:

p−i(m1
i ,m

1(3)
−i )− p−i(m1

i ,m
1(1)
−i )

p−i(m1
i ,m

1(2)
−i )− p−i(m1

i ,m
1(1)
−i )

=
p−i(m2

i ,m
2(3)
−i )− p−i(m2

i ,m
2(1)
−i )

p−i(m2
i ,m

2(2)
−i )− p−i(m2

i ,m
2(1)
−i )

, (7)

when pi(m1
i ,m

1(1)
−i ) ̸= pi(m1

i ,m
1(2)
−i ).

Proof. A direct implication of Equation (6).

Proposition 1 describes a necessary condition of QRE. Given three pairs of games

that satisfy the equal choice probability condition for player i, QRE requires that the

relative change in player −i’s choice probabilities across these games must be identical.

Figure 2 illustrates how the equality in Proposition 1 no longer holds when choices are

generated by Level-2 behavior rather than behavior consistent with QRE. Under the same

conditions for player 1’s behavior, the relative change in player 2’s choice probabilities

are not identical, thus QRE can be rejected.

3.2 Identification of Utility and Error Distribution under QRE

Our second key result establishes the non-parametric identification of the utility func-

tion and the distribution function. We first define the utility difference of player i’s

11



Figure 2: Violation of the Testable Implication under Level-2 Behavior

two actions, given mi and the other player’s action a−i to be π̃i(mi,a−i) = πi(m,ai =

1,a−i)−πi(m,ai = 0,a−i). Our identification results also require some standard normal-

ization, as summarized by Assumption 3.

Assumption 3. (a) There exists a realization mi = m1
i , such that

∣∣π̃i(m1
i ,a−i = 0)

∣∣ =∣∣πi(m1
i ,ai = 1,a−i = 0)−πi(m1

i ,ai = 0,a−i = 0)
∣∣= 1.

(b) Median(ε̃i) = 0, where ε̃i = εi(ai = 0)− εi(ai = 1).

In the discrete choice literature, Assumption 3(a) is referred to as a scale normaliza-

tion and Assumption 3(b) as a location normalization (Train, 2009). Since any affine

transformation of the utility function represents the same preference and predicts the

same choice, these normalizations impose no restrictions on players’ behaviors and are

innocuous (a complete explanation of these normalizations is in the appendix).8 However

we do clarify one important aspect of Assumption 3(b). This normalization is required

only for the general specification of the utility function πi(mi,a). It is not necessary in ex-

8We consider the transformation to apply to both πi(·) and εi(·). If the transformation is only applied
to πi(·), it will generally affect a player’s choice. See appendix for more details.
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perimental settings that define utility over monetary outcomes only, πi(mi,a)= ui[mi(a)].

This specification imposes the additional restriction that the utility of any two action

profiles with identical monetary outcomes must be equal. This restriction identifies the

median of ε̃i, therefore Assumption 3(b) is redundant (and even testable) in this scenario.

We now describe our identification result. Let Pi(m1
i ) denote the image of player i’s

choice probability function pi(mi = m1
i ,m−i). This choice probability function fixes

mi = m1
i but varies m−i. Given that pi(·) is a continuous function, we know that

Pi(m1
i ) = [minm−i pi(m1

i ,m−i),maxm−i pi(m1
i ,m−i)]. Next, denote int[Pi(m1

i )] as the

set of all interior points in Pi(m1
i ). With this notation, we establish the non-parametric

identification of the inverse of the distribution function:

Proposition 2. Given Assumptions 1–3, suppose that the QRE restrictions are satisfied

whenever mi = m1
i , regardless of the realization of m−i. Suppose further that 1/2 ∈

int[Pi(m1
i )], then F−1

i (p) is point identified ∀p ∈ Pi(m1
i ).

Since the distribution function Fi(·) is invertible given its strict monotonicity, the

identification of its inverse – as in Proposition 2 – implies the identification of Fi(·).9

The “local” nature of Proposition 2 is particularly noteworthy. To identify F−1
i (·),

Proposition 2 imposes QRE restrictions for only one realization of mi = m1
i . For any

other realization of mi, players’ behaviors are unrestricted (e.g., they need not satisfy

QRE). We refer to this condition as the local QRE restriction. It is a substantially

weaker condition than the global QRE restriction that assumes QRE in the entire space

of (mi,m−i); that is, Definition 1. Therefore the global QRE condition imposes many

more restrictions that substantially over-identify Fi(·).10

9This identification result requires player i’s choice probability function pi(m1
i ,m−i) to go through

the point 1/2. This condition is easily satisfied if m−i has sufficient variation. For instance, consider the
matching pennies games presented in Table 1. Figure 1 presents player 1’s choice probability functions
under QRE restrictions. It is clear that all these functions go through the point 1/2.

10Proposition 2 identifies F−1
i (p) in the region where p ∈ Pi(m1

i ). When p lies outside this region,
the analyst has to impose QRE restrictions for more realizations of mi to identify F−1

i (·). Specifically,
consider H realizations of mi, denoted by m1

i to mH
i . With an appropriate choice of these H realizations,

∪H
h=1Pi(mh

i ) could well approximate the image of player i’s probability function pi(mi,m−i) where vari-
ations of both mi and m−i are considered. Therefore, if the analyst imposes the local QRE restriction for
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Given that Fi(·) has been identified, we now establish the non-parametric identifica-

tion of the difference of utility function π̃i(·). It is well known in the discrete choice

literature that the analyst can, at most, identify such utility differences (Train, 2009).

Furthermore, in experimental settings that specify πi(mi,a) = ui[mi(a)], it is standard to

normalize the utility of $0 or the minimum payoff to 0. With either of these two location

normalizations, the function ui(·) is non-parametrically identified.

Proposition 3. Suppose that the conditions met in Proposition 2 hold so that Fi(·) is

identified. Moreover, consider two realizations of m−i, say m1
−i and m2

−i. Suppose that

QRE restrictions are satisfied whenever m−i =m1
−i or m−i =m2

−i, regardless of the real-

ization of mi. These conditions imply that the difference of utility function π̃i(mi,a−i) =

πi(mi,ai = 1,a−i)−πi(mi,ai = 0,a−i) is identified ∀mi,a−i.

Proposition 3 also requires a local QRE restriction, but it is slightly different than the

one required by Proposition 2. While Proposition 2 imposes the restriction on one real-

ization of the own control variables mi, Proposition 3 considers the local QRE condition

on two realizations of the other player’s m−i. Using the matching pennies game in Table

1 as a motivating example, Figure 3 illustrates the two local QRE restrictions in the space

of (mi,m−i).

The black line represents all combinations of (mi,m−i) that satisfy mi = m1
i . If the

local QRE restriction is imposed on all points on this line, then the distribution function

Fi(·) is identified as stated in Proposition 2. Moreover, if the local QRE restriction is

imposed on the two blue lines (i.e., the combinations of (mi,m−i) with the property that

m−i equals either m1
−i or m2

−i); then the difference of utility function π̃i(·) is also identi-

fied as shown in Proposition 3. Importantly, since mi and m−i are continuous variables,

the region required for identification by the local QRE restriction has a measure of zero

(one black line and two blue lines as opposed to the entire space). Therefore the global

each of these H realizations, function F−1
i [pi(mi,m−i)] could be point identified for (almost) the entire

image of the function pi(mi,m−i). Importantly, since mi includes continuous variables, the region with
the local QRE restriction (i.e., H realizations of mi) still has a measure of zero.
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Figure 3: Illustration of the Local QRE Restrictions

QRE condition (Definition 1) substantially over-identifies the model primitives.

The over-identification results from Propositions 2 and 3 have an important implica-

tion on the test of QRE. Recall the testable implication of QRE described by Proposition

1. It is challenging to construct a statistical test based directly on Equation (7) because

it requires the analyst to choose three pairs of (mi,m−i) such that the equal choice prob-

ability condition holds. To determine these three pairs in practice, one has to estimate

player i’s choice probability with some estimation error which enters Equation (7) in a

cumbersome manner. Therefore it is difficult to derive the limiting distribution of this

test.11

Alternatively, our identification results suggest that Proposition 1 can be also viewed

as an over-identification test which substantially simplifies the testing procedure. To see

how, consider the choice probability function plotted in the left panel of Figure 1. Propo-

sition 2 states that Fi(·) can be identified if QRE is imposed on either the blue or green

line. Therefore, if QRE holds globally, the Fi(·) identified from each line must be iden-

11A test based on Proposition 1 takes the form: 1[pi(m1
i ,m

1(1)
−i ) = pi(m2

i ,m
2(1)
−i )] ·1[pi(m1

i ,m
1(2)
−i ) =

pi(m2
i ,m

2(2)
−i )] ·1[pi(m1

i ,m
1(3)
−i ) = pi(m2

i ,m
2(3)
−i )] ·

[ p−i(m1
i ,m

1(3)
−i )−p−i(m1

i ,m
1(1)
−i )

p−i(m1
i ,m

1(2)
−i )−p−i(m1

i ,m
1(1)
−i )

− p−i(m2
i ,m

2(3)
−i )−p−i(m2

i ,m
2(1)
−i )

p−i(m2
i ,m

2(2)
−i )−p−i(m2

i ,m
2(1)
−i )

]
.

The first-step estimation error enters into a non-linear and discontinuous indicator function 1(·).
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tical. This is a standard over-identification test. Next, recall Equation (6). The equality

of Fi(·) between the blue and green lines (i.e., the left hand side column) directly leads

to the testable implication in Proposition 1. However, if QRE is not satisfied, then the

Fi(·) identified from the blue line will be different from the one identified from the green

line. This difference suggests that the two terms on the left hand side of Equation (6) are

no longer identical and further implies the violation of the testable implication by Equa-

tion (7). Importantly, because Proposition 1 can be interpreted as an over-identification

test, we can construct a likelihood ratio test of QRE that is simple to implement in prac-

tice (described in Section 4). Our testing procedure also similarly exploits the over-

identification restrictions for the utility function, as established in Proposition 3.

4 Over-Identification Test and Monte Carlo Experiment

This section details our testing procedure in our empirical setting. We begin by conduct-

ing a Monte Carlo exercise based on the matching pennies game in Table 1. We then

use this exercise to illustrate our testing procedure of QRE and study its finite sample

properties. We evaluate the test under two scenarios: one where data are generated by

QRE behavior, and another in which QRE is not satisfied.

4.1 Design of the Monte Carlo Experiment

The Monte Carlo experiment focuses on the matching pennies game discussed above. In

each simulation, we generate a dataset with T trials where T ∈ {200,1000,8000}. Our

empirical framework assumes that mi is a continuous variable. To mimic this continuity

in a computationally feasible manner, we independently draw (m1,m2) from a uniform

M×M grid with resolution that depends on T . For T = 200, M = {10, 12, . . . , 46, 48}.

The asymptotic property of our test depends on the number of trials T → ∞. As T
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increases, the grid becomes finer and approaches zero.12

In line with most experimental studies, we simulate players with a CRRA utility

function over monetary payoffs of the form:

ui(m) = mσ . (8)

The risk preference parameter σ is set to 0.6 to model risk aversion.

For the distribution function Fi(ε̃i), we consider two cases:

Symmetric Distribution: ε̃i ∼ 0.5N(−1.5,1)+0.5N(1.5,1),

Asymmetric Distribution: ε̃i ∼ 0.5N(−1.5,0.5)+0.5N(1.5,2). (9)

In the symmetric case, ε̃i is drawn from a mixture of two normal distributions with

equal weight. These two distributions have a standard deviation of 1 and opposite means.

Therefore, ε̃i is distributed symmetrically around 0 and follows a bi-modal distribution.

The asymmetric case is almost identical except that the two mixing distributions have

standard deviations of 0.5 and 2, respectively. Such an adjustment preserves the mean of

ε̃i at zero. However, the distribution of ε̃i turns out to be asymmetric and has more density

in the negative region compared to the positive region. The probability density functions

for both symmetric and asymmetric cases are shown in Figure 4, with a comparison to

12For T , the values of m1 and m2 are independently and uniformly drawn from a discrete set M, defined
below:

M = {10,10+ τ,10+2τ,10+3τ, · · · ,48},where τ =
2

⌊
√

T/200⌋
.

Note that ⌊·⌋ is the floor function; for instance ⌊x⌋= a if and only if a ≤ x < a+1. We introduce this floor
function so that set M could be properly defined. Therefore, the simulation asymptotically approximates
the scenario that mi is uniformly drawn from a continuous distribution. We choose this discrete approxima-
tion due to two reasons. First, any experimental dataset has a finite discrete set M and our approximation
matches this experimental environment. Second, it substantially reduces the computational cost. To see
this point. Let S denote the number of Monte Carlo samples or datasets. When mi is drawn from a con-
tinuous distribution, QRE has to be solved for each observation and the computational cost increases in
the order of T × S. In contrast, under discrete approximation, QRE only needs to be solved in the space
of M ×M. The computational cost increases in the order of T . Our simulation chooses a high value of
S = 1000; therefore, the discrete approximation is computationally efficient.
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Figure 4: Probability Density Functions of the Random Perturbation ε̃i

the Logit specification – that is, logistically distributed ε̃i.

The Monte Carlo exercise examines these two distributions instead of other common

specifications such as, for example, Logit and Probit. This allows us to investigate the

consequences when an analyst uses commonly assumed distribution functions that are,

in fact, mis-specified.

Finally, we consider two data generating processes. The first process assumes that

data are generated consistently with QRE. In this scenario, the rejection rate of our pro-

posed test should match the pre-specified significance level. Put differently, our test

should obtain the desired type-1 error and not over-reject the true hypothesis.

The second process generates data that are inconsistent with QRE. This scenario

illustrates whether our test has the power to reject a false hypothesis and achieve a small

type-2 error. We consider a modification of the Level-k model to generate non-QRE

behavior (Nagel, 1995; Stahl and Wilson, 1994, 1995; Halevy et al., 2023). Specifically,
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the level-0 type randomly selects each action with equal probability. For any k > 0, the

level-k type believes that their opponent is the level-(k− 1) type. However, instead of

best responding to such belief, this type plays a Quantal response. In particular, their

expected utility of each action is perturbed by the calculation error εi. The data are then

generated by the behavior of level-k types, where k ∈ {1,2,3}.

4.2 Testing Procedure and Results

4.2.1 Estimation

Our estimation procedure borrows elements from recent developments in semi-nonparametric

estimation (Chen, 2007). First, note that each player i’s choice probability function pi(m)

can be consistently estimated by the following Logit specification with high-order poly-

nomials:

p̂i(m) =
exp

[
∑

L
l=0(∑

l
h=0 β̂l,hmh

1ml−h
2 )

]
1+ exp

[
∑

L
l=0(∑

l
h=0 β̂l,hmh

1ml−h
2 )

] , (10)

where L represents the order of polynomials. In all models that we simulate in this

Monte-Carlo exercise, we find that an order of L = 3 approximates the choice probability

function well.13

As described above, pi(·) and p−i(·) can be consistently estimated; therefore, this

exercise treats them as observables to the analyst.14 With these choice probabilities,

Equation (2) suggests that the only unknown in player i’s expected utility Eπi(·) is their

utility function. If the utility function ui(·) is non-parametrically specified, it can be ap-

proximated by high-order polynomials or other sieve methods. In a typical experimental

dataset where the number of observations per participant is not large, a parametric utility

function can be imposed. This specification can simply be plugged in to Equation (2).

To non-parametrically approximate the distribution function Fi(ε̃i), we exploit a Logit

13Alternatively, it can be estimated by the Kernel or Nadaraya-Watson estimator: p̂i(m) =
∑

T
t=1 Kh(m−mt )·1(ai,t=1)

∑
T
t=1 Kh(m−mt )

, where Kh(·) is a kernel with a bandwidth h.
14Admittedly, this treatment assumes away the first-step estimation error. In practice, this error could

be dealt with using the correction in Chen (2007) or via a bootstrap procedure.
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transformation of the non-parametric error distribution, gi(ε̃i) = log[ Fi(ε̃i)
1−Fi(ε̃i)

]. Inverting

this relationship implies that Fi(ε̃i) =
exp[gi(ε̃i)]

1+exp[gi(ε̃i)]
, which is the standard Logit formula

applied to gi(·). We then approximate Fi(·) with high-order polynomials applied on gi(·);

for instance, gi(ε̃i) = ∑
L
l=0 βi,l · ε̃ l

i where L increases with the sample size T . In practice,

we find that an order of L = 4 approximates the distribution function in Equation (9)

precisely and use it throughout.

Finally, define the difference of player i’s expected utility as Eπ̃i[mi, p−i(m)]=Eπi[mi,ai =

1, p−i(m)]−Eπi[mi,ai = 0, p−i(m)]. Then player i’s choice probability under QRE re-

strictions can be expressed as:

pQRE
i (m) =

exp
{

∑
L
l=0 βi,l ·Eπ̃i[mi, p−i(m)]l

}
1+ exp

{
∑

L
l=0 βi,l ·Eπ̃i[mi, p−i(m)]l

} . (11)

By Propositions 2 and 3, the utility function and the distribution function are non-

parametrically identified. Therefore, these model primitives can be consistently esti-

mated by maximizing the following log-likelihood function:

LLQRE
i = max

σi,βi,l

T

∑
t=1

{
1(ai,t = 1) log[pQRE

i (mt)]+1(ai,t = 0) log[1− pQRE
i (mt)]

}
. (12)

4.2.2 Testing

As described in Section 3, when player i’s behavior is inconsistent with QRE, the differ-

ence of player i’s expected utility can be specified as the difference in expected utility

under QRE restrictions plus a bias term: Eπ̃i[mi, p−i(m)]+ γi(m). The bias term, γi(m),

measures the departure of player i’s behavior from QRE in terms of utility.15 We estab-

lished that QRE restrictions hold if and only if γi(m) equals zero. In our test, we consider

15Consider any choice probability function pi(m) not necessarily consistent with QRE. This function is
equivalent to an expected utility difference F−1

i [pi(m)] due to the fact that pi = Fi[F−1
i (pi)]. Consequently,

the bias term is precisely γi(m) = F−1
i [pi(m)]−Eπ̃i[mi, p−i(m)].
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a linear bias term function,

γi(m) = γi,0 + γi,1mi + γi,2m−i. (13)

which is identified by variation as described by the application of Propositions 2 and 3.16

Player i’s choice probability without QRE restrictions is then:

pNon−QRE
i (m) =

exp
{

∑
L
l=1 βi,l ·

(
Eπ̃i[mi, p−i(m)]+ γi(m)

)l}
1+ exp

{
∑

L
l=1 βi,l ·

(
Eπ̃i[mi, p−i(m)]+ γi(m)

)l} . (14)

The model primitives can also be consistently estimated by MLE:

LLNon−QRE
i

= max
σi,βi,γi

T

∑
t=1

{
1(ai,t = 1) log[pNon−QRE

i (mt)]+1(ai,t = 0) log[1− pNon−QRE
i (mt)]

}
.

(15)

The model described by Equation (14) nests QRE restrictions (i.e., Equation (11)) as

a special case. Therefore, we can test QRE by the following likelihood ratio test on the

hypothesis that the vector γi = 0:

λi = 2(LLNon−QRE
i −LLQRE

i ). (16)

The likelihood ratio statistic, λi, naturally lends itself to test the QRE restriction for

player i. It follows an asymptotic Chi-squared distribution with degrees of freedom given

by the number of restrictions on γi,0,γi,1, and γi,2. To test whether QRE holds for both

16Recall that – as shown in Figure 3 – imposing QRE restrictions only on the black and blue lines suf-
fices to identify the utility and distribution functions. Naturally, any point or realization of (mi,m−i) that
lies outside of these lines provides information about γi(·). Given the linear specification by Equation
(13), this information identifies the coefficient on m−i (i.e., γi,2). Further, the specification of ui(m) that
defines utility over the space of monetary reward only will identify the coefficient on mi (i.e., γi). Finally,
under a symmetric distribution, the median restriction – Median(ε̃i) = 0 – identifies the constant γi,0. In
contrast, this constant cannot be separately identified from the median of ε̃i when it is asymmetrically dis-
tributed. Therefore, under asymmetric case, we test whether (γi,1,γi,2) jointly equal zero; instead whether
(γi,0,γi,1,γi,2) are all zeros – as in the symmetric case.

21



players, one can simply consider the statistic λ = λi + λ−i and double the degrees of

freedom.

4.2.3 Monte-Carlo Results

Our Monte-Carlo exercise studies four specifications. The first assumes that the analyst

knows the true utility and distribution functions (labelled as “Known Utility & Error”).

It inserts these true functions into the estimation procedure and tests whether the vector

γ = 0. Obviously, this model is not feasible in an actual dataset, but it serves as a natural

benchmark for the comparison of other specifications. The second model permits the

analyst to be unaware of both the utility function and the distribution function (labelled

as “Unknown Utility & Error”). It tests QRE according to the procedure described in

Equations (11) to (16).

The remaining two specifications study the consequences when either the utility func-

tion or the distribution function is mis-specified. The third assumes that the analyst

knows the true distribution function but mis-specifies the utility function to take the form

ui(m) = m (labelled as “Linear Utility & Known Error”). In contrast, the fourth speci-

fication assumes that the analyst knows the utility function but mistakenly imposes the

Logit formula for each player’s choice probability (labelled as “Known Utility & Logit

Error).

Data Generated By QRE Behavior Table 2 presents the rejection rates of our test

when the data are generated by QRE behavior, and consequently represents the type-1

error. The rejection rates are calculated based on 1,000 Monte Carlo datasets.

The testing procedure suggested in this paper (“Unknown Utility & Error”) achieves

a rejection rate that is extremely close to the pre-specified significance level, for both

symmetric and asymmetric distributions and any sample size. However, if the analyst

imposes risk neurality on a risk averse participant (“Linear Utility & Known Error”),

the true hypothesis of QRE is substantially over-rejected irrespective of the distribution
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Table 2: Rejection Rates of the Test of QRE when Data Are Generated by QRE Behavior

Symmetric Distribution Asymmetric Distribution
Significance Level α = 0.1 α = 0.05 α = 0.01 α = 0.1 α = 0.05 α = 0.01
T = 200
Known Utility & Error 10.2% 5.7% 1.6% 9.9% 4.5% 1.2%
Unknown Utility & Error 9.1% 4.8% 1.3% 14.2% 8.5% 1.8%
Linear Utility & Known Error 61.4% 48.9% 24.2% 78.8% 68.6% 45.2%
Known Utility & Logit Error 12.2% 7.2% 2.1% 65.6% 52.3% 27.8%
T = 1000
Known Utility & Error 11.2% 5.6% 1.8% 11.2% 6% 0.8%
Unknown Utility & Error 9.3% 4.7% 0.5% 9.1% 5.6% 1%
Linear Utility & Known Error 100% 99.7% 98.8% 100% 100% 99.9%
Known Utility & Logit Error 15.1% 7.9% 1.9% 100% 99.9% 99.9%
T = 8000
Known Utility & Error 9.7% 6.1% 1.3% 9.4% 4.3% 0.4%
Unknown Utility & Error 12.7% 5.7% 1.1% 13.5% 6.7% 1.6%
Linear Utility & Known Error 100% 100% 100% 100% 100% 100%
Known Utility & Logit Error 38.2% 27.3% 11.5% 100% 100% 100%

Notes: Rejection rates are calculated based on 1,000 Monte Carlo samples.

and regardless of the sample size. In sample sizes typical of economics experiments

(T = 200), rejection rates are near 50%. In larger samples, we observe extremely high

rejection rates that are close to 100%.

If the analyst imposes the true utility function but incorrectly specifies the restriction

of the Logit formula (“Known Utility & Logit Error”), the type-1 error rate depends on

the symmetry of ε̃i’s distribution. If ε̃i is symmetrically distributed, the Logit formula is

mis-specified but imposes the correct symmetry condition. With a moderate sample size

T ∈ {200,1000}, this correct shape restriction yields a rejection rate somewhat higher

than the pre-specified significance level. The rejection rate is substantially higher only in

an unusually large dataset (T = 8000). In contrast, when the distribution of ε̃i is asym-

metric, the Logit formula imposes an incorrect shape restriction and leads to considerable

over-rejection of QRE regardless of sample size.

Data Generated By Non-QRE Behavior: Iterative Reasoning Table 3 presents re-

jection rates when the data are generated by Level-k model instead of by QRE behavior.
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It consequently studies whether our procedure has the power to reject incorrect hypoth-

esis, i.e., type-2 error.

Table 3: Rejection Rates of the Test of QRE when Data Are Generated by Level-k

Panel A: T = 200
Symmetric Distribution Asymmetric Distribution

Significance Level α = 0.1 α = 0.05 α = 0.01 α = 0.1 α = 0.05 α = 0.01
Level-1 Behavior
Known Utility & Error 100% 100% 100% 100% 100% 100%
Unknown Utility & Error 86% 81% 67.9% 54.4% 49.3% 43.8%
Level-2 Behavior
Known Utility & Error 100% 100% 100% 100% 100% 100%
Unknown Utility & Error 99.8% 99.7% 99.2% 82.8% 75.9% 58.5%
Level-3 Behavior
Known Utility & Error 100% 100% 100% 100% 100% 100%
Unknown Utility & Error 99.1% 99% 98.9% 99.4% 99.2% 98.6%

Panel B: T = 1000
Symmetric Distribution Asymmetric Distribution

Significance Level α = 0.1 α = 0.05 α = 0.01 α = 0.1 α = 0.05 α = 0.01
Level-1 Behavior
Known Utility & Error 100% 100% 100% 100% 100% 100%
Unknown Utility & Error 99.5% 99.4% 99.4% 84.9% 80.8% 72.8%
Level-2 Behavior
Known Utility & Error 100% 100% 100% 100% 100% 100%
Unknown Utility & Error 100% 100% 100% 100% 99.9% 99.7%
Level-3 Behavior
Known Utility & Error 100% 100% 100% 100% 100% 100%
Unknown Utility & Error 100% 100% 100% 99.9% 99.9% 99.9%

When player types are sophisticated (i.e., level-2 and above), the test obtains a rejec-

tion rate of almost 100% for any error distribution and any sample size. This suggests that

the proposed testing procedure possesses the power to reject an incorrect null hypothesis

in typical sample sizes. However when players are the level-1 type, the rejection rates

tend to be lower than in the “Known Utility & Error” benchmark, dropping to around

50% with an asymmetric error distribution and a small sample size T = 200. This arises

because the “level-1” type player i believes with certainty that player −i is the level-0

type who randomizes uniformly over the set of actions. According to this belief, player

−i’s choice probability remains constant across all realizations of (mi,m−i). In turn,
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the Quantal response to such belief implies that player i reacts only to their own con-

trol variable mi and does not respond to the other player’s m−i. Equivalently, player i’s

choice probability function reduces from pi(mi,m−i) to pi(mi). Therefore, the data lose

one important dimension of variation provided by m−i. As shown in Propositions 1 to

3, it is indeed the variation of both mi and m−i that identifies the model and tests QRE.

Naturally, due to the disappearance of m−i in pi(·), our test obtains a lower rejection rate

when data are generated by the level-1 type.17

5 Empirical Application: An Experimental Study

For our empirical application, we focus on the matching pennies game as presented in

Table 1. Our experiment maintains the same structure as Goeree and Holt (2001). Using

the data from Goeree and Holt (2001), Aguirregabiria and Xie (2021) do not reject QRE

at the population level for the row player. Moreover, in a generalized 3× 3 matching

pennies game, Melo et al. (2019) do reject QRE at the population level, but cannot reject

QRE at the individual level for more than 50% of participants.

5.1 Experimental Design

Our design requires sufficient variation in the monetary payoff magnitudes while hold-

ing the error distribution constant. As described in our Monte-Carlo exercise, we exoge-

nously varied two parameters, m1 and m2, that directly enter the utility function, one for

each player. These parameters were unique combinations drawn from a discrete set of

20 values, M = {10,12,14, · · · ,48}. We randomized the order of these combinations for

a given experiment session. Each session was comprised of 20 participants who were al-

located to two separate matching groups and player roles were assigned. Throughout the

experiment, each participant maintained their player role and remained in their group. To
17In principle, one can still distinguish between data that are consistent with level-1 or QRE. In particu-

lar, as described above, level-1 type behavior restricts pi(·) to be independent of m−i while QRE requires
pi(·) to depend simultaneously on both mi and m−i.
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ensure efficient data collection, each group played, in total, 200 matching pennies games

with varying monetary payoffs and with random re-matching to mute potential order ef-

fects. Thus, in a given experiment session with 20 participants we collected data using

|m1|× |m2|= 20×20 = 400 unique parameter combinations. This approach enables the

analyst to concentrate on the relevant range of monetary payoff combinations in order to

estimate the choice probability function precisely.

Figure 5 visualizes the experimental implementation of the bimatrix matching pen-

nies game, where the parameters m1 and m2 were exogenously varied and changed in

each round (in this example, m1 = 22 and m2 = 18). To create a more natural and intu-

itive interface, we displayed one 2×2 matrix for each player separately as in Halevy et

al. (2023). The first matrix represents player 1’s monetary payoffs and the second matrix

represents player 2’s monetary rewards, respectively.

Figure 5: Matching Pennies – Experimental Implementation

To improve participants’ experience and to assist in selecting an action, we imple-

mented a highlighting tool that uses yellow color. When a participant moves their mouse

over a row in their matrix (“Your Earnings”), the action is highlighted in yellow color in

both matrices: a row in their matrix, and a column in the opponent’s matrix (“Opponent’s
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Earnings”). By left clicking the mouse over a row it remains highlighted, and participants

can un-highlight it by clicking their mouse again or clicking another row. Similarly, when

participants move their mouse over a row that corresponds to an action of the opponent in

“Opponent’s Earnings,” the row is highlighted in yellow and the corresponding column

is highlighted in yellow in “Your Earnings.” Clicking the mouse over the row keeps it

highlighted, and clicking it again (or clicking another action) unhighlights it.18

We conducted the experiment with students enrolled at the University of Vienna in

December 2022. In total, 100 participants were recruited from Vienna Center for Ex-

perimental Economics’ (VCEE) pool using ORSEE (Greiner 2015). No participant was

allowed to participate in more than one session.

After reading the instructions, participants had to correctly answer three comprehen-

sion questions before starting the first task. If participants made a mistake in answering

a quiz question, they had to answer it correctly in order to move to the next question.

The experiment was programmed in oTree (Chen et al. 2016). For each participant, we

randomly selected one of the 200 matching pennies games that they had played, and

rewarded them based on the earnings in this selected game. This design mutes poten-

tial hedging incentives. The average participant earned C19.18 ≈ $20.50, including a

show-up payment of C5, in a session that typically lasted around 70 minutes.

5.2 Experimental Data and Results

We first present the summary statistics of our raw data in Table 4. Since our experiment

consists of only one symmetric game (i.e., m1 = m2 = 16) and 399 asymmetric games,

we observe asymmetry in choice probabilities across actions.

These choice probabilities do respond to monetary payoffs. Table 5 reports the esti-

mated coefficients of the reduced form Logit regression of player i’s choice probability of

18The interactive experimental interface can be accessed anytime upon request. Example screenshots
can be found in the appendix.
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Table 4: Summary Statistics

Mean Std. Dev. Min Max
Player 1’s Choice of Action 1 0.365 0.481 0 1
Player 2’s Choice of Action 1 0.539 0.499 0 1
mi 29 11.533 10 48
Observations 20,000 = 100 (Participants) × 200 (Decisions Per Participant)

action 1 on m1 and m2 .19 As would be expected, an increase of mi strictly increases the

expected utility of action 0 for player i, holding the other player’s choice probability con-

stant. Consequently, the rise of mi reduces player i’s choice probability of action 1; i.e.,

pi(mi,m−i). The above channel is referred to as the own-utility effect and is prevalent in

experimental studies of matching pennies games (Ochs, 1995; Goeree et al., 2003). Such

an effect is also salient and highly significant in our dataset. However, if a player knows

that the other player has an own-utility effect, the structure of the matching pennies game

then implies that player 1’s choice probability of action 1 decreases in m2 (while player

2’s probability increases in m1). Table 5 shows that such effect of other-utility is also

sizable and statistically significant.

Table 5: Reduced Form Logit Regression of Player i’s Choice Probability Function

Player 1 Player 2

m1
−0.027∗∗∗ 0.050∗∗∗

(0.002) (0.002)

m2
−0.028∗∗∗ −0.052∗∗∗

(0.002) (0.002)

Constant
1.016∗∗∗ 0.223∗∗∗

(0.079) (0.077)
Log-likelihood -6339.57 -6184.61
Observations 10,000

Notes: ∗, ∗∗, and ∗∗∗ represent significant at 10%, 5%, 1% significance lev-
els, respectively.

To test QRE, we first obtain a non-parametric estimate of player i’s choice probability,

using the specification outlined in Equation (10) and MLE. Given the first-step estimate
19Note that we label action 1 based on Table 1. This action 1 corresponds to the choice of “Bottom” as

presented in Figure 5.
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p̂i(·), we then conduct the test of QRE in two different scenarios.

Imposing Homogeneity We begin with the homogeneous case where we assume that

all participants in the experiment share the same utility function and error distribution.

In this case, one can interpret all participants with the same player role as a single par-

ticipant or player who makes T = 50×200 = 10,000 decisions, rather than 50 different

participants making individually T = 200 choices. With this in mind, we then conduct

the test for each player i following the procedure described in Equations (11) to (16).

Similar to the Monte-Carlo experiment discussed in Section 4, the test considers a para-

metric utility function as in Equation (8) and non-parametrically approximates the error

distribution.

Table 6 presents the test results for four different specifications.

Table 6: Chi-Square Statistic and p-Value of the Test of QRE (Population Level)

Player 1 Player 2

Linear Utility & Logit Error
χ2 = 126.62 χ2 = 665.03
p < 0.0001 p < 0.0001

Unknown Utility & Logit Error
χ2 = 73.79 χ2 = 216.01
p < 0.0001 p < 0.0001

Linear Utility & Unknown Error
χ2 = 68.34 χ2 = 12.17
p < 0.0001 p = 0.0023

Unknown Utility & Error
χ2 = 7.01 χ2 = 26.71
p = 0.0300 p < 0.0001

The first specification assumes that utility is known and is given by monetary reward

so that participants are risk neutral. Moreover, the choice probability takes the usual

Logit formula. Accordingly, this specification is labelled as “Linear Utility & Logit Er-

ror.” The second and third specifications only impose one of the two restrictions and

specify the other function to be unknown to the analyst. They are referred to as “Un-

known Utility & Logit Error” and “Linear Utility & Unknown Error.” The last specifica-
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tion is the one proposed in this study – it allows both functions to be unobserved by the

analyst (i.e., “Unknown Utility & Error”).

When each individual has a heterogeneous error distribution but shares the same

utility function, QRE can be described by a representative player whose error distribution

is non-parametrically specified (Golman, 2011). Consequently, our “Linear Utility &

Unknown Error” and “Unknown Utility & Error” specifications can be interpreted as a

test of such heterogeneous QRE at the population level and with the corresponding utility

specification. Note that the above two specifications nest the heterogeneous Logit QRE

(Brian et al., 2009; Golman, 2012) as a special case.

Whenever the homogeneity restriction is applied, the null hypothesis of QRE is re-

jected in our data under any specification. However, Table 6 also delivers an important

message: When less restrictions are imposed on the utility and the distribution functions,

QRE becomes more difficult to reject. This is reflected in the decreasing test statistic.

Importantly, the rejection of QRE presented in Table 6 should not be mistaken for

the common finding in the literature that QRE generally fits data well (Camerer, 2003;

Crawford et al., 2013). The literature evaluates QRE based on whether its prediction is

closer to the true choice probability, as compared with other alternatives. In contrast, our

test studies whether QRE perfectly matches the actual pi(·). Consequently, it is possible

that QRE is rejected by our test but still has a relatively good fit of the data. Figure 6 plots

the normalized value of the log-likelihood which measures how well a model matches

the sample data compared to a random guess, where 100% suggests a perfect fit.20

Even the simplest QRE (i.e., with Logit error and linear utility) fits the data much bet-

ter than NE with non-linear utility. In particular, model fit substantially increases when

the error distribution is non-parametrically specified. This specification can be viewed as

an aggregate fit of QRE with heterogeneous error distributions (Golman, 2011). Our non-

20The scale is LLModel−LLRandom

LLSample−LLRandom , where LLRandom indicates the log-likelihood value when each action is
assumed to be chosen with equal probability. It thus represents the lower bound that any model should
beat. LLSample is calculated using the choice probability p̂i(mi,m−i) estimated from the sample. By
construction, it represents the maximum value of log-likelihood that any model could reach.
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Figure 6: Model Fitness

parametric identification allow us to estimate such heterogeneous QRE at the population

level. This is indicated by the two models with non-parametric error distributions, as pre-

sented by the last two bars on the right in Figure 6. As a benchmark, existing approaches

which impose a distributional assumption perform worse (three bars on left) (Goeree et

al., 2003; Aguirregabiria and Xie, 2021). Finally, Figure 7 plots the same measure for

an out-of-sample prediction that estimates model parameters for 50% of participants and

predict on the remaining participants. The two specifications with non-parametric error

distributions do indeed achieve the best of out-of-sample fit.

Permitting Heterogeneity Our second analysis allows the utility function and error

distribution of the participants in our experiment to be heterogeneous. In particular, we

perform the test outlined in Equations (11) to (16) for every participant n. Formally, we

allow un(·) ̸= un′(·) and Fn(·) ̸= Fn′(·) for n ̸= n′. In line with the interpretation in Melo

et al. (2019), the above process essentially tests the following null hypothesis: Partic-

ipant n features Quantal response behavior with respect to other players’ actual choice

probabilities. If this hypothesis holds for every participant, one interpretation of this re-
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Figure 7: Out of Sample Fitness

sult is that the heterogeneous QRE holds in the data. In addition to the representative

player interpretation of heterogeneous QRE offered by Golman (2011), this second ex-

ercise estimates and tests QRE while allowing heterogeneity in the utility function at the

individual level.

Figure 8 plots the empirical cumulative distribution function (C.D.F.) for the p-value

of the test statistic. It also adds a vertical line that represents the threshold of the 5% sig-

nificance level. Therefore, the intersection of the empirical C.D.F. and the vertical line

represents the fraction of participants whose Quantal response behavior is rejected at the

5% level. Similar to the results under the homogeneity assumption, the test delivers a

general message: The less restrictions imposed on the utility and the error distribution,

the more likely it is that QRE holds in the data. In more detail, with a risk neutral utility

function and a logistically distributed error, the Quantal response behavior is rejected

for almost 90% of participants. When the restriction is imposed for only one of the

two model primitives, the null hypothesis is rejected for more than 60% of participants.

In contrast, with unknown and flexible specifications of both functions, the Quantal re-
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sponse behavior is rejected for less than 40% of participants.

Figure 8: Empirical C.D.F. of the p-Value of the Test of QRE at the Participant Level

In summary, the Quantal response hypothesis has a satisfactory statistical fit, with

sufficiently flexible and heterogeneous utilities and error distributions. However, when

strong assumptions in terms of the functional form or homogeneity are imposed, QRE

can be easily rejected. These results emphasize the importance of a flexible and unknown

specification of all model primitives. With this specification, the testable implication and

the identification results derived in this paper are particularly useful.

6 Conclusion

This paper studies the falsifiability and identification of QRE when both utility and the

error distribution are non-parametric functions unknown to the analyst. Making use of

cross-game variation, we first derive a testable implication of QRE. We then show that

both the utility function and the distribution function of the error are non-parametrically
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over-identified under the hypothesis of QRE. Such an over-identification result directly

implies a testing procedure that is straightforward to implement. Our Monte-Carlo ex-

periment illustrates that the test has sufficient power to reject a false hypothesis. Power

can be improved by assuming a functional form for utility which allows risk-aversion to

vary.

We apply our results to an experimental study of the matching pennies games. With

a flexible and heterogeneous specification of the utility and error distribution, the Quan-

tal response hypothesis cannot be rejected for a majority of participants. However, it

is highly rejected when strong assumptions on functional form or homogeneity are im-

posed.

Our identification results have an important implication for estimating QRE and pre-

dicting behavior. Our non-parametric error specification can be viewed as a popula-

tion level fit of QRE with heterogeneous error distributions across participants (Golman,

2011). Previous approaches have not exploited this interpretation because of a lack of

identification results. The identification results in this paper provide a means to fit het-

erogeneous QRE at the population level. We find that QRE with an unknown error

distribution fits the data substantially better than previous methods, both in-sample and

out-of-sample. This suggests that there is substantial heterogeneity in error distributions

in our participant sample.

Our approach that exploits cross-game variation does have an obvious limitation. In

a series of games, we can fit and test the null hypothesis that QRE holds jointly in this

group of games. However, it is impossible to test whether QRE holds in any single game

(i.e., for a particular realization of (mi,m−i)).

Finally, while QRE has been widely applied in the experimental literature, it is far less

exploited in field data. One key reason is that monetary payoffs are usually unobserved.

By specifying the utility as an unknown non-parametric function, this paper opens up the

possibility to apply QRE to field data. We commend empirical applications of QRE to
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such data for future research.
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