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Games with More Players and / or More Actions

This section extends the results in the main text to a general multinomial choice game

with N ≥ 2 players. We use letters i and j to denote a single player. Letter −i represents

all players other than i. Each player i simultaneously chooses an action, denoted as ai,

from their action set Ai = {0,1, · · · ,Ki}. The number of actions (i.e., Ki + 1 ≥ 2) is

unrestricted and could be heterogeneous across players. Moreover, let a = (ai,a−i) ∈

A = ×N
j=1A j be an action profile of this game, where a−i = (a1, · · · ,ai−1,ai+1, · · · ,aN)

is the decision profile made by all players other than i. In an experiment, player i will

receive a monetary payoff mi(a), in the unit of experimental currency, when a is the

realized outcome. Consequently, given the utility function ui(m), player i would obtain

a utility ui[mi(a)] for the profile a.

Recall that, as described in the main text, the monetary reward mi(a) is a control

variable in the econometric model. This variable has a support Mi(a) ⊂ R. Further-

more, define mi as a ∏ j(K j + 1)× 1 vector, and each element in this vector represents

player i’s monetary payoff of the corresponding action profile. Naturally, the vector

m = (m′
1, · · · ,m′

N)
′ then summarizes the rewards across profiles and across players. In

addition, we use p−i(a−i|m) to denote the probability that the profile a−i is chosen by all
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players other than i given m. Similarly, p−i(m) is a ∏ j ̸=i(K j +1)×1 vector that consists

of the probability of each profile a−i. With these notations, the function of player i’s

expected utility for action ai = k is expressed as:

EUi[mi,ai = k,p−i(m)] = ∑
a−i

ui[mi(ai = k,a−i)] · p−i(a−i|m). (46)

In this game with potentially more than two actions, player i’s random perturbations

extend to a (Ki+1)×1 vector denoted as ϵi = (εi(0),εi(1), · · · ,εi(Ki))
′. Specifically, this

vector of errors follows a joint C.D.F. represented by Γi(ϵi). Moreover, each element in

this vector, denoted as εi(ai), represents player i’s calculation error when evaluating the

expected utility of the corresponding action. Due to the perturbations of these mistakes,

player i will choose ai = k if and only if

EUi[mi,ai = k,p−i(m)]+ εi(k)≥ EUi[mi,ai = k′,p−i(m)]+ εi(k′), ∀k′ ̸= k. (47)

Define pi(m) =
(

p(ai = 1|m), p(ai = 2|m), · · · , p(ai =Ki|m)
)′ as a Ki×1 vector that

includes player i’s choice probability of each action. Note that since the sum of probabil-

ities of all actions equals 1, the choice probability of the base action ai = 0 is suppressed

in the vector pi(m). Cautiously, our treatment of the vector p−i(m) is slightly different

as this vector consists of the probability of every action profile, including the base pro-

file a−i = 0. This slight distinction in the treatment of pi(m) and p−i(m) simplifies the

presentation and proofs of our results.

Under QRE, players’ decisions are independent conditional on m. Therefore, the

joint choice probabilities p−i(m) for all players other than i are determined solely by the

individual choice probabilities p j(m) for each player j ̸= i. For instance, p−i(a−i|m) =

∏ j ̸=i p j(a j|m). If we interpret QRE as BNE in an incomplete information game where

ϵi represents player i’s private information. The above conditional independence arises

from the assumption of independent private information across players (i.e., ϵi ⊥ ϵ j ∀i ̸=
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j). In incomplete information games, when corr(ϵi,ϵ j) ̸= 0, player i’s private informa-

tion becomes informative about player j’s payoffs and potential decisions. Therefore,

each player should adjust their strategies based on their private information, leading to

conditional correlated strategies across players. However, within the QRE framework,

where ϵi is viewed as player i’s mistakes rather than private information, it raises an issue

for the above channel of correlated actions. Specifically, if player i’s strategy depends

on the value of ϵi, they should be able to distinguish actual utility and calculation errors.

However, if such a distinction is clear, player i should not make any mistakes. Due to this

contradiction, we are not aware of any studies in the framework of QRE that consider ϵi

to be correlated across players.

In this general multinomial choice game, we modify our assumptions in the 2× 2

game as presented in the main text. These modified assumptions are listed below.

Assumption 1’. Each player i’s utility function ui(m) is bounded. Moreover, it is strictly

increasing and continuously differentiable in m.

Assumption 2’. For each player i, let Â(i) denote the set of action profiles for which the

outcome variable has exogenous variations conditional on player i’s outcome variables

of other profiles and other players’ outcome variables. In other words, ∀a ∈ Â(i), mi(a)

has exogenous variations conditional on mi(a′) ∀a′ ∈ A and ∀m−i ∈ M−i. We assume

that Â(i) consists of at least two distinct elements and ∪a∈Â(i)Mi(a) =∪a∈AMi(a). This

union is an interval that could be either open or closed.

Assumption 3’. (a) Γi(ϵi) has a positive and continuous density function on RKi+1, ∀i.

(b) Γi(ϵi) is independent of (mi,m−i), ∀i.

Assumption 4’. For each player i, the function of choice probabilities pi(m) varies

with both mi and m−i. Moreover, pi(m) is continuously differentiable for almost every

m ∈M. If there are values of m for which pi(m) is not continuously differentiable, the

total number of these discontinuous points is finite.
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Assumption 5’. For each player i, there exists a value of the outcome variable, denoted

as m1
i ∈ ∪a∈Â(i)Mi(a), such that u′i(m

1
i ) = 1.

Assumptions 1’ and 4’ are slightly stronger than Assumptions 1 and 4. These two

modified assumptions not only require the utility function ui(m) and the choice proba-

bility function pi(m) to be continuous but also to be differentiable. This differentiation

simplifies the proofs in this general multinomial choice game with N ≥ 2 players. More-

over, due to the expanded space of action profiles, Assumption 2’ requires the analyst to

exogenously vary the monetary payoffs of at least two action profiles within each player.

This is in contrast to most of identification results in 2×2 games, where the exogenous

variation of a single profile’s payoff suffices.

Assumption 3’(a) and Assumption 3’(b) are standard regularity and invariance con-

ditions for the error distributions, adapted for games with more actions. These conditions

allow for general error structures. Specifically, the error of each action could follow a

heterogeneous marginal distribution and exhibit arbitrary correlation with the error of

another action.

Assumption 5’ is an alternative but equivalent scale normalization compared to As-

sumption 5. Specifically, consider the affine transformation ui(m) = c+ β ûi(m), As-

sumption 5’ simply transforms ûi(m) to its equivalent form by setting β = 1
û′i(m

1
i )

. Since

most of the proofs in this generalization are based on derivatives, it is convenient to

normalize the marginal utility as in Assumption 5’.

In discrete choice models, the decision rule by Equation (47) implies the following

mapping between player i’s expected utility differences and their choice probabilities:

pi(m) = Fi[ẼUi(mi,p−i(m))], (48)

where ẼUi(mi,p−i(m)) is a Ki ×1 vector that represents the difference in expected util-

ities for player i. In particular, the kth element of this vector, denoted as ẼU i[mi,ai =

k,p−i(m)], is defined as EUi[mi,ai = k,p−i(m)]−EUi[mi,ai = 0,p−i(m)]. As standard
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in discrete choice models, these differences of expected utilities completely determine

player i’s choice probabilities (Train, 2009). This relationship can be represented by the

mapping Fi : RKi → int(∆Ki), where int(∆Ki) denotes the interior of Ki-dimensional sim-

plex. The kth element in this mapping, denoted as Fi,k(·), then represents the resulting

choice probability of action ai = k. Under Assumption 3’(a), the mapping Fi(·) is bijec-

tive (Norets and Takahashi, 2013; Sørensen and Fosgerau, 2022). Moreover, Hotz and

Miller (1993) show that Fi(·) is differentiable.

In this general multinomial choice game with N ≥ 2 players, QRE is defined by a

fixed-point condition, as summarized by Definition 1’.

Definition 1’. The vector
(
p1(m)′,p2(m)′, · · · ,pN(m)′

)
denotes the QRE choice proba-

bilities if and only if the following condition holds:

pi(m) = Fi[ẼUi(mi,p−i(m))], ∀i and m ∈M. (49)

For any m ∈ M, if there are multiple vectors that satisfy Equation (49) (i.e., multiple

QRE), there exists a mechanism that selects one of the vectors / equilibria.

In this section, we first prove that player i’s utility function is non-parametrically

identified. We then exploit this result to show the over-identification of Fi(·) and the

testable implication of QRE.

Proposition 7. Suppose that Assumptions 1’ to 5’ and QRE restrictions hold, then the

derivative of the utility function u′i(m) is point identified ∀m ∈ ∪aMi(a) and ∀i.

Proof. Under Assumption 2’, let a′ = (a′i,a
′
−i) ̸= a′′ = (a′′i ,a

′′
−i) be the two action profiles

in the set Â(i). We assume that a′i ̸= 0 and a′′i ̸= 0. This is without loss of generality since

the analyst could always re-label player i’s actions. As described above, Assumptions 1’,

3’ and 4’ imply that every function in Equation (49) is differentiable with respect to their

arguments. Consequently, we could take derivative on both sides of Equation (49) and
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obtain the following relationship:

∂pi(m)

∂mi(a′)
=

∂Fi[ẼUi(mi,p−i(m))]

∂ ẼUi(mi,p−i(m))

∂ ẼUi(mi,p−i(m))

∂mi(a′)
+

∂Fi[ẼUi(mi,p−i(m))]

∂ ẼUi(mi,p−i(m))
Π̃i(mi)

∂p−i(m)

∂mi(a′)
,

∂pi(m)

∂mi(a′′)
=

∂Fi[ẼUi(mi,p−i(m))]

∂ ẼUi(mi,p−i(m))

∂ ẼUi(mi,p−i(m))

∂mi(a′′)
+

∂Fi[ẼUi(mi,p−i(m))]

∂ ẼUi(mi,p−i(m))
Π̃i(mi)

∂p−i(m)

∂mi(a′′)
.

(50)

Note that Π̃i(mi) is a Ki ×∏ j ̸=i(K j +1) matrix whose element in cell (ai,a−i) is repre-

sented by π̃i(mi,ai,a−i) = ui[mi(ai,a−i)]−ui[mi(ai = 0,a−i)].

Equation (49) suggests that pi(m) could be alternatively represented as pi(mi,p−i(m)).

This equivalent form could be consistently estimated from choice data, due to the con-

sistent estimation of p−i(m) as described in the main text. Consequently, we could take

derivative for this equivalent form and obtain:

∂pi(mi,p−i(m))

∂p′
−i(m)

=
∂Fi[ẼUi(mi,p−i(m))]

∂ ẼUi(mi,p−i(m))
Π̃i(mi). (51)

Substituting Equation (51) into Equation (50) leads to:

∂pi(m)

∂mi(a′)
− ∂pi(mi,p−i(m))

∂p′
−i(m)

∂p−i(m)

∂mi(a′)
=

∂Fi[ẼUi(mi,p−i(m))]

∂ ẼUi(mi,p−i(m))

∂ ẼUi(mi,p−i(m))

∂mi(a′)
,

∂pi(m)

∂mi(a′′)
− ∂pi(mi,p−i(m))

∂p′
−i(m)

∂p−i(m)

∂mi(a′′)
=

∂Fi[ẼUi(mi,p−i(m))]

∂ ẼUi(mi,p−i(m))

∂ ẼUi(mi,p−i(m))

∂mi(a′′)
.

(52)

Since each player’s choice probability can be consistently estimated, the terms on the

left-hand side of Equation (52) are known to the analyst. Consequently, the terms on the

right-hand side are identified.

Consider an arbitrary a = (ai,a−i) where ai ̸= 0. The structure of expected utilities
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implies the following expression:

∂Fi[ẼUi(mi,p−i(m))]

∂ ẼUi(mi,p−i(m))

∂ ẼUi(mi,p−i(m))

∂mi(a)
=



∂Fi,1[ẼUi(mi,p−i(m))]

∂ ẼU i(mi,ai,p−i(m))
u′i[mi(a)]p−i(a−i|m)

∂Fi,2[ẼUi(mi,p−i(m))]

∂ ẼU i(mi,ai,p−i(m))
u′i[mi(a)]p−i(a−i|m)

...
∂Fi,Ki [ẼUi(mi,p−i(m))]

∂ ẼU i(mi,ai,p−i(m))
u′i[mi(a)]p−i(a−i|m)


(53)

Substituting Equation (53) into Equation (52) implies that the terms ∂Fi,k(ẼUi)

∂ ẼU i(·,a′i)
u′i[mi(a′)]p−i(a′−i|m)

and ∂Fi,k(ẼUi)

∂ ẼU i(·,a′′i )
u′i[mi(a′′)]p−i(a′′−i|m) are identified for each k. It further implies the follow-

ing result:

∂Fi,a′′i
[ẼUi(mi,p−i(m))]

∂ ẼU i(mi,a′i,p−i(m))
u′i[mi(a′)]p−i(a′−i|m)

∂Fi,a′i
[ẼUi(mi,p−i(m))]

∂ ẼU i(mi,a′′i ,p−i(m))
u′i[mi(a′′)]p−i(a′′−i|m)

=
u′i[mi(a′)]p−i(a′−i|m)

u′i[mi(a′′)]p−i(a′′−i|m)
is identified. (54)

The equality of Equation (54) follows the results in discrete choice models such that
∂Fi(ẼUi)

∂ ẼUi(·)
can be seen as the hessian matrix of the social welfare function (Sørensen and

Fosgerau, 2022). The social welfare function is strictly convex. Therefore, the ma-

trix ∂Fi(ẼUi)

∂ ẼUi(·)
is symmetric and positive definite. This symmetry implies that

∂Fi,a′′i
(·)

∂ ẼU i(·,a′i)
=

∂Fi,a′i
(·)

∂ ẼU i(·,a′′i )
and can be cancelled out in Equation (54). Moreover, each term in the denom-

inator is strictly positive so that the ratio is well defined. In particular,
∂Fi,a′i

(·)

∂ ẼU i(·,a′′i )
> 0

due to the strictly positive density in Assumption 3’(a); u′i(·)> 0 due to the strict mono-

tonicity as per Assumption 1’; p−i(a′′−i|m)> 0 due to the full support condition of ϵi in

Assumption 3’(a).

Equation (54) identifies u′i(m
′)

u′i(m
′′) for any m′, m′′ ∈ ∪a∈Â(i)Mi(a) = ∪a∈AMi(a). As-

sumption 5’ normalizes the scale of u′i(m
1
i ) at one arbitrary value m1

i . This normalization

then identifies u′i(m) ∀m ∈ ∪a∈AMi(a) and completes the proof.

Proposition 7 identifies the marginal utility u′i(m) and consequently identifies the

utility function in the class of ui(m)+ c. As in the main text, when the analyst considers
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the normalization, such as ui(0)= 0 or ui[min{∪aMi(a)}] = 0, the value of c is identified.

It further identifies the utility function ui(m) ∀m ∈ ∪aMi(a).

As described above, Assumption 3’(a) implies that the mapping Fi(·) is bijective

(Norets and Takahashi, 2013; Sørensen and Fosgerau, 2022). Therefore, we could invert

Fi(·) and the QRE restriction by Equation (49) becomes:

F−1
i [pi(m)] = ẼUi[mi,p−i(m)] = Π̃i(mi) ·p−i(m). (55)

This equation implies the non-parametric identification of the error distribution, as es-

tablished by Proposition 1’.

Proposition 1’. Suppose that Assumptions 1’ to 5’ and QRE restrictions hold; therefore,

the marginal utility u′i(m) is point identified for each player i by Proposition 7. In the

next step, suppose that the analyst fixes mi at an arbitrary value m1
i and only considers

the variation of m−i, then F−1
i (p) is point identified ∀p ∈ Pi(m1

i ).

Proof. As described above, the identification of u′i(m) implies that the utility function is

identified in the class of ui(m)+c. Consequently, the difference of utilities π̃i(mi,ai,a−i)=

ui[mi(ai,a−i)]−ui[mi(ai = 0,a−i)] is uniquely determined as the constant c is cancelled

out. It further implies that the matrix Π̃i(mi) is known to the analyst for each mi ∈Mi.

For an arbitrary value m1
i , Equation (55) turns to:

F−1
i [pi(m1

i ,m−i)] = Π̃i(m1
i ) ·p−i(m1

i ,m−i). (56)

The terms on the right-hand side are known to the analyst. Consequently, the exogenous

variation of m−i then identifies F−1
i (p) for all values of p in the support of Pi(m1

i ). This

completes the proof.

Due to the inverse relationship between F−1
i (·) and Fi(·), Proposition 1’ implies the

non-parametric identification of the mapping Fi(·). It further implies that the distribution
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of the difference of errors ϵ̃i =
(
εi(1)−εi(0),εi(2)−εi(0), · · · ,εi(Ki)−εi(0)

)′ is uniquely

determined (Train, 2009).

Recall that F̂−1
i (p|m1

i ) represents the inverted choice probability function that satis-

fies the QRE restrictions when the analyst fixes mi at m1
i . Proposition 1’ directly implies

a testable restriction of QRE, as established below.

Proposition 2’. Suppose that Assumptions 1’ to 5’ and QRE restrictions hold. Consider

any two realizations of mi, denoted as m1
i and m2

i . Suppose that Pi(m1
i )∩Pi(m2

i ) ̸=∅,

then the null hypothesis of QRE implies the following testable restriction:

F̂−1
i (p|m1

i ) = F̂−1
i (p|m2

i ), ∀p ∈ Pi(m1
i )∩Pi(m2

i ). (57)

Proof. A direct implication of Proposition 1’.

Comparison to Xie (2022) In multinomial choice games with field data, Xie (2022) es-

tablishes the non-parametric identification of the utility and the error distribution. How-

ever, to prove these results, he imposes two strong restrictions: one on the model primi-

tive and the other on the data. In contrast, this paper shows that in experimental datasets

where the outcome variable is observed, the non-parametric identification results can be

achieved without imposing these two strong restrictions. We elaborate these two restric-

tions below.

The first restriction in Xie (2022) is that the error distribution must satisfy a rank

ordering property. Under this property, one action is chosen more frequently than an-

other if and only if it yields a strictly higher expected utility. While this assumption

is often made in empirical applications of QRE, it imposes strong restrictions on the

error distribution. In particular, this property rules out error structures with flexible cor-

relations and features of heteroskedasticity. To illustrate this point, consider an agent

facing three actions labeled as 1, 2, and 3, with associated expected utilities denoted as
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EU(1), EU(2), and EU(3). Without loss of generality, suppose that EU(1)> EU(2)>

EU(3). Consider one structure where the errors ε(k) follow the same marginal distri-

bution but can be correlated across actions. In particular, ε(1) and ε(2) exhibit strong

positive correlation, and they are independent of ε(3). This error structure implies that

EU(1)+ε(1)> EU(2)+ε(2) would hold with high probability, leading to a low choice

probability of action 2. However, action 3 might be chosen more frequently than action

2 due to its independent error ε(3). Next, consider another structure where ε(k) is in-

dependent across actions but are heterogeneous in their scales. In particular, the agent

only makes minor mistakes for the first two actions, resulting in small Var(ε(1)) and

Var(ε(2)). Consequently, action 2 is still chosen with a small probability since its per-

turbed expected utility is likely to be smaller than that of action 1. In contrast, suppose

ε(3) has a large variance, then the third action could be chosen more frequently than

action 2 since this agent may frequently and mistakenly evaluate action 3 as highly at-

tractive. In summary, under these two reasonable error structures, the agent will choose

action 3 more frequently than action 2 even though action 3 has a lower expected utility.

Clearly, the rank ordering property is violated.

Xie (2022) also considers another strong restriction on the data. In particular, he

defines two actions to be connected if these two actions can be chosen with equal prob-

ability. His identification results require each pair of two actions to be either connected

or linked through a sequence of connected actions. This particular data structure is chal-

lenging to construct in an experiment.

Implications of Assumption 2’

This section focuses on 2× 2 games and discusses the implications of Assumption 2’

on the results presented in the main text. First, under this assumption, the previous

section establishes the identification results without assuming prior knowledge of the

values of F−1
i (p1) and F−1

i (p2). Consequently, when player i’s monetary payoffs exhibit
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exogenous variations for at least two action profiles, the analyst does not need to impose

the payoff structures as required by Assumption 6 to identify the median and the mean

of the errors.

Assumption 2’ itself also implies that our over-identification test incorporates more

restrictions than the test by Xie (2022). Specifically, let a′ ̸= a′′ be the two action profiles

in Â(i) as required by Assumption 2’. When Mi(a′)∩Mi(a′′) is an interval, there exist

infinite pairs where each pair contains two values m1
i and m2

i such that m1
i (a′) = m2

i (a′′)

and m2
i (a′) = m1

i (a′′). Moreover, between m1
i and m2

i , let player i’s monetary rewards

hold constant for all action profiles other than a′ and a′′. We claim that these pairs imply

testable restrictions of QRE in addition to Xie (2022).

Consider the first scenario that a′−i ̸= a′′−i. The pair m1
i and m2

i implies that π̃i(m1
i ,a

′
−i)−

π̃i(m2
i ,a

′
−i)= π̃i(m1

i ,a
′′
−i)− π̃i(m2

i ,a
′′
−i) if a′i ̸= a′′i and π̃i(m1

i ,a
′
−i)− π̃i(m2

i ,a
′
−i)= π̃i(m2

i ,a
′′
−i)−

π̃i(m1
i ,a

′′
−i) if a′i = a′′i . Consider the other scenario that a′−i = a′′−i. The pair m1

i and m2
i

then implies that π̃i(m1
i ,a

′
−i) = −π̃i(m2

i ,a
′
−i). These linear restrictions on utility dif-

ferences π̃i(·) lead to additional linear restrictions on F̂−1
i (p|mi) through the definition

of F̂−1
i (p|m) by Equation (6). These restrictions are therefore included in our over-

identification test that is based on F̂−1
i (p|mi). However, they are excluded from the test

by Xie (2022).

Relaxing the Invariance Assumption When there are at least two action profiles with

varying monetary payoffs as per Assumption 2’, the analyst is able to relax the invariance

condition as in Assumption 3(b) and still tests the null hypothesis of QRE. In particular,

we allow player i’s distribution function Fi(ε̃i) to depend on their own rewards mi and

restrict it to be independent of other players’ payoffs m−i. To capture this dependence,

we adapt the notation Fi(ε̃i|mi).

Let a′ and a′′ be the two distinct profiles in Â(−i). Suppose that the analyst fixes

m−i(a′) = m1
−i and varies player −i’s payoffs for the other profile a′′. In alignment with

the main text, we denote F̂−1
i (p|mi,m−i(a′) = m1

−i) as the quantile function that satisfies
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QRE restrictions when m−i(a′) is fixed at m1
−i. The proof of Proposition 1 indicates

that this quantile function is identified for any value of m−i(a′) based on the variation

provided by m−i(a′′). Consequently, the null hypothesis of QRE implies the following

testable implication:

F̂−1
i (p|mi,m−i(a′) = m1

−i) = F̂−1
i (p|mi,m−i(a′) = m2

−i), ∀mi,m1
−i,m

2
−i.
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