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Games with More Players and/or More Actions

This section generalizes the results in the main text to a general multinomial choice

game. This game has N ≥ 2 players and each player could have any finite number of

possible choices. In particular, we use letters i and j to denote two arbitrary players.

Letter −i represents all players other than i. Each player i simultaneously chooses an

action, denoted by ai, from their action set Ai = {0,1, · · · ,Ki}. Therefore, player i has

(Ki+1) possible alternatives. Moreover, let a = (ai,a−i)∈ A =×N
j=1A j denote an action

profile of this game, where a−i = (a1, · · · ,ai−1,ai+1, · · · ,aN) represents the decision pro-

file made by all players other than i. Then player i’s utility of the profile a is πi(mi,a).

Finally, denote p−i(a−i|m) as the probability that the profile a−i is chosen by all players

other than i, given m = (m′
1, · · · ,m′

N)
′; then player i’s expected utility of action ai = k is

Eπi[mi,ai = k,p−i(m)]

=∑
a−i

πi(mi,ai = k,a−i) · p−i(a−i|m) (23)

=πi(mi,ai = k,a−i = 0)+ ∑
a−i ̸=0

[πi(mi,ai = k,a−i)−πi(mi,ai = k,0)] · p−i(a−i|m).
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Specifically, 0 is an (N −1)×1 vector. It represents the event that all players other than

i choose action 0. Moreover, p−i(·) is a
(

∏ j ̸=i(K j +1)−1
)
×1 vector. Each element in

this vector denotes the probability of the corresponding action profile chosen by player

−i. Note that since the sum of all profiles’ probabilities equals 1, we exclude the event

a−i = 0 in p−i(·) for simplicity.

In this game with potentially more than two actions, player i’s random perturbation

extends to a (Ki + 1)× 1 vector, denoted by ϵi = (εi(0),εi(1), · · · ,εi(Ki))
′. Note that

εi(ai = k) represents player i’s calculation error of action k. Due to the perturbation of

these mistakes, player i will choose action k if and only if

Eπi[mi,ai = k,p−i(m)]+ εi(k)≥ Eπi[mi,ai = k′,p−i(m)]+ εi(k′), ∀k′ ̸= k. (24)

Let Γi(ϵi) denote the C.D.F. of ϵi = (εi(0),εi(1), · · · ,εi(Ki))
′. Note that εi(ai = k).

We focus on the regular case that Γi(ϵi) is absolutely continuous with respect to the

Lebesgue measure. Put differently, Γi(ϵi) has a density with respect to the Lebesgue

measure. When there are only two actions, the above condition reduces to the strict

monotonicity of Fi(·), as required in the main text.

Assumption 2’ simply modifies the invariance Assumption 2 to accommodate the

new notation.

Assumption 2’. Γi(·) is independent of (mi,m−i).

Given Γi(·), player i’s choice probability of action k – denoted by pi(ai = k|m) –

takes the following form:

pi(ai = k|m)

=
∫
ϵi

1
{

Eπi[mi,k,p−i(m)]+ εi(k)≥ Eπi[mi,k′,p−i(m)]+ εi(k′), ∀k′ ̸= k
}

dΓi(ϵi)

=Fi,k
{
Eπ̃i[mi,p−i(m)]

}
. (25)
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Naturally, Fi,k(·) denotes the kth element of the integral function that maps player i’s

expected utilities to their choice probabilities. Moreover, Eπ̃i(·) =
(
Eπi(·,ai = 1)−

Eπi(·,ai = 0),Eπi(·,ai = 2)−Eπi(·,ai = 0), · · · ,Eπi(·,ai = Ki)−Eπi(·,ai = 0)
)′ is a

Ki×1 vector. It represents the difference of each action’s expected utility with respect to

the base action, denoted by action 0. As standard in the discrete choice literature (Train,

2009), it is this difference that completely determines a player’s choice probability.

Therefore, our analysis focuses on Eπ̃i(·). Finally, let pi(m) =
(

pi(ai = 1|m), pi(ai =

2|m), · · · , pi(ai = Ki|m))′ be a Ki ×1 vector that consists of player i’s choice probability

of each action. Again, since the probabilities of all actions sum to 1, action 0 is excluded

from pi(·) for simplicity. It is convenient to represent Equation (25) in the following

matrix form:

pi(m) = Fi
{
Eπ̃i[m,p−i(m)]

}
. (26)

Similar as Definition 1 in the main text, QRE imposes a fixed-point condition such

that Equation (26) holds for every player. It is summarized by Definition 1’.

Definition 1’. The vector p(m)= (p1(m)′,p2(m)′, · · · ,pN(m)′)′ denotes the QRE choice

probabilities if and only if Equation (26) is satisfied ∀1 ≤ i ≤ N, m.

Hotz and Miller (1993) and Norets and Takahashi (2013) show that – under the ab-

solutely continuous condition of Γi(·) – the mapping from player i’s expected utilities to

their choice probabilities is bijective. Consequently, function Fi(·) is invertible. Inverting

Equation (26) yields the following equation:

Eπ̃i[mi,p−i(m)] = F−1
i [pi(m)]

or

π̃i(mi)+∆i(mi) ·p−i(m) = F−1
i [pi(m)]. (27)

The second line of Equation (27) decomposes Eπ̃i(·) into two parts: π̃i(·) and ∆i(·) ·
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p−i(·). Term π̃i(·) is a Ki × 1 vector. Its kth element is the utility difference between

action k and action 0, when all other players choose the base action 0. For instance, it is

π̃i(mi,ai = k,a−i = 0) = πi(mi,ai = k,a−i = 0)−πi(mi,ai = 0,a−i = 0). In the literature

that estimates empirical games, this term is referred to as the base return. In addition,

∆i(·) is a Ki ×
(

∏ j ̸=i(K j + 1)− 1
)

matrix. The element on the kth row and lth column

of this matrix is δi(mi,ai = k,a−i = l) = π̃i(mi,ai = k,a−i = l)− π̃i(mi,ai = k,a−i = 0).

Specifically, it represents the change of the utility difference when other players deviate

their behaviors from 0 to the action profile indexed by l. Naturally, this term is referred to

as the strategic interaction. For convenience, we assume that the matrix ∆i(·) has a full

rank. This assumption is extremely weak. To see this point, note that ∆i(mi) is random

due to the random variables mi. Consequently, ∆i will have a full rank with probability

1. This is because in the pace of all possible matrices, the set of full rank matrices has a

full measure. Importantly, when ∆i(·) is rank deficient, the testable implication of QRE

still exists but just turns to be slightly weaker.

The decomposition in the second line of Equation (27) follows the definition of

Eπ̃i(·). It separates the utility function (i.e., π̃i(·) and ∆i(·)) and other players’ choice

probabilities p−i(m). This decomposition is convenient to prove the main results. Sim-

ilar as the main text, Equation (27) contains all model restrictions that are imposed

on player i’s behaviors. It directly leads a testable implication of QRE. To see this

implication, define p̃−i(mi,m1,2
−i ) = p−i(mi,m2

−i)−p−i(mi,m1
−i) and F̃−1

i (mi,m1,2
−i ) =

F−1
i [pi(mi,m2

−i)]−F−1
i [pi(mi,m1

−i)] as the differences of player −i’s choice probabili-

ties and inverted distribution function between two realizations of m−i, denoted by m1
−i

and m2
−i. Further, for any H > 2, let p̃−i(mi,m1:H

−i )=
(
p̃−i(mi,m1,2

−i ), · · · , p̃−i(mi,m1,H
−i )

)′
and F̃−1

i (mi,m1:H
−i ) =

(
F̃−1

i (mi,m1,2
−i ), · · · , F̃

−1
i (mi,m1,H

−i )
)′ be the corresponding matri-

ces. With the above notations, Proposition 1’ presents a testable implication of QRE in

this general multinomial choice game.

Proposition 1’. Under Assumptions 1 and 2’, for any H = ∏ j ̸=i(K j + 1)+ 1 pairs of
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realizations of (mi,m−i) – denoted by (m1
i ,m

1(h)
−i ) and (m2

i ,m
2(h)
−i ) ∀h ≤ H – that satisfy

the following condition of equal choice probability:

pi(m1
i ,m

1(h)
−i ) = pi(m2

i ,m
2(h)
−i ), ∀h ≤ H.

Given these pairs, QRE implies the following testable restriction:

Rank
[
p̃−1
−i (m

1
i ,m

1(1:H−1)
−i ) · p̃−i(m1

i ,m
1(2:H)
−i )− p̃−1

−i (m
2
i ,m

2(1:H−1)
−i ) · p̃−i(m2

i ,m
2(2:H)
−i )

]
≤∏

j ̸=i
(K j +1)−1−min

(
Ki,∏

j ̸=i
(K j +1)−1

)
. (28)

Note that the above is a
(

∏ j ̸=i(K j +1)−1
)
×
(

∏ j ̸=i(K j +1)−1
)

matrix.

Proof. Consider two realizations of m−i, denoted by m1
−i and m2

−i, and plug them into

Equation (27). It then obtains the following expressions:

π̃i(mi)+∆i(mi) ·p−i(mi,m1
−i) = F−1

i [pi(mi,m1
−i)],

π̃i(mi)+∆i(mi) ·p−i(mi,m2
−i) = F−1

i [pi(mi,m2
−i)].

Subtracting these two equations implies the following difference of expected utilities:

∆i(mi) · p̃−i(mi,m1,2
−i ) = F̃−1

i (mi,m1,2
−i ). (29)

Additionally, if we consider realizations m1
−i to mH−1

−i of m−i, Equation (29) could be

expressed in the following matrix form:

∆i(mi) · p̃−i(mi,m1:H−1
−i ) = F̃−1

i (mi,m1:H−1
−i )

⇒∆i(mi) = F̃−1
i (mi,m1:H−1

−i ) · p̃−1
−i (mi,m1:H−1

−i ). (30)
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Analogously, realizations m2
−i to mH

−i of m−i would imply a similar relationship

∆i(mi) = F̃−1
i (mi,m2:H

−i ) · p̃−1
−i (mi,m2:H

−i ). (31)

Given that the term ∆i(mi) on the left hand sides of Equations (30) and (31) is the same,

equalizing these two equations implies the following:

F̃−1
i (mi,m1:H−1

−i ) · p̃−1
−i (mi,m1:H−1

−i ) = F̃−1
i (mi,m2:H

−i ) · p̃−1
−i (mi,m2:H

−i )

⇔ F̃−1
i (mi,m1:H−1

−i ) · p̃−1
−i (mi,m1:H−1

−i ) · p̃−i(mi,m2:H
−i ) = F̃−1

i (mi,m2:H
−i ), ∀mi. (32)

With Equation (32) and the condition of equal choice probability, it is straightforward to

show

F̃−1
i (m1

i ,m
1(1:H−1)
−i ) · p̃−1

−i (m
1
i ,m

1(1:H−1)
−i ) · p̃−i(mi,m

1(2:H)
−i )

=F̃−1
i (m1

i ,m
1(2:H)
−i )

=F̃−1
i (m2

i ,m
2(2:H)
−i )

=F̃−1
i (m2

i ,m
2(1:H−1)
−i ) · p̃−1

−i (m
2
i ,m

2(1:H−1)
−i ) · p̃−i(mi,m

2(2:H)
−i ). (33)

The second and forth lines are the results of Equation (32) and the second equality is due

to the condition of equal choice probability. This condition could further implies that

Equation (33) could be re-arranged as:

F̃−1
i (m1

i ,m
1(1:H−1)
−i )

·[p̃−1
−i (m

1
i ,m

1(1:H−1)
−i ) · p̃−i(mi,m

1(2:H)
−i )− p̃−1

−i (m
2
i ,m

2(1:H−1)
−i ) · p̃−i(mi,m

2(2:H)
−i )]

=0. (34)

Note that F̃−1
i (·) is a matrix with full rank due to the full rank condition of ∆i(·). There-

fore, Equation (34) consists of min
(
Ki,∏ j ̸=i(K j + 1)− 1

)
linear restrictions imposed
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on the matrix in the bracket []. It then suggests that the rank of this matrix is at most

∏ j ̸=i(K j +1)−1−min
(
Ki,∏ j ̸=i(K j +1)−1

)
. This completes the proof.

As compared to Proposition 1 that focuses on 2× 2 games, Proposition 1’ requires

two slightly stronger conditions. These two conditions would still hold generically when

the control variable m has sufficient variation. Specifically, the first condition states that

the equal choice probability property is satisfied for ∏ j ̸=i(K j + 1)+ 1 pairs of realiza-

tions, rather than just three pairs in the case of 2 × 2 games. These additional pairs

are essential for our results due to extra dimensions of the action profiles in a general

multinomial choice game. The second condition implicitly assumes the matrix p̃−i(·) is

invertible. This invertibility obviously requires m−i to affect p−i(·), as in the case of 2×2

games. However, it further requires the effect to cause “linearly independent” variation

of p−i(a−i|m) so that the choice probability of any action profile cannot be written as a

linear combination of the probabilities of other profiles. When m−i has enough dimen-

sions and sufficient variation, the invertibility condition will be satisfied with probability

1. This is because in the space of all possible matrices, the set of invertible matrices has

a full measure.

The two conditions in Proposition 1’ could be easily generated through an experi-

mental design. Consider the utility function such that πi(mi,a) = ui[mi(a)]. Suppose

that the analyst designs an experiment that exogenously varies mi(a), independent of the

action profile a and player role i. Such a design ensures that the matrix ∂Eπ̃i(·)
∂m′

i
has a full

rank for almost every realization of mi. This full rank property is a sufficient condition

for the equal choice probability property in Proposition 1’. In addition, the independent

variation of m−i(ai,a−i = k) could lead to an independent variation of p−i(a−i = k|m).

This linear independence directly implies the invertibility of the matrix p̃−i(·).

Unlike Proposition 1 in the case of 2×2 games that provides an equality restriction,

Proposition 1’ derives a rank restriction as the testable implication of QRE. In particular,

Equation (28) imposes an upper bound on a matrix of player −i’s choice probability
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function. It implies that such a matrix cannot be full rank. Importantly, this restriction

has the power to reject incorrect null hypothesis, since the set of rank deficient matrices

has a zero measure. Moreover, to test the implication by Equation (28), the analyst has

to do inference on the rank of a matrix. This technique has been well developed in the

econometrics literature (Robin and Smith, 2000; Kleibergen and Paap, 2006; Camba-

Mendez and Kapetanios, 2009). Finally, Proposition 1’ is the result for a general game

and Proposition 1 can be seen as a special case when there are two players and two

actions.21

In games with more than two players and/or actions, the identification of the utility

and the distribution functions requires two slightly stronger assumptions. The first one

imposes a so-called rank ordering property and is summarized by Assumption 3’. It

modifies Assumption 3 in 2×2 games to a general multinomial choice game.

Assumption 3’. (a) There exists a realization mi = m1
i , such that

∣∣π̃i(m1
i ,ai = 1,a−i =

0)
∣∣= ∣∣πi(m1

i ,ai = 1,a−i = 0)−πi(m1
i ,ai = 0,a−i = 0)

∣∣= 1.

(b) For any two actions, denoted by k and k′, we have Eπi[mi,ai = k,p−i(m)] >

Eπi[mi,ai = k′,p−i(m)] if and only if pi(ai = k|m)> pi(ai = k′|m).

Assumption 3’(a) is identical to Assumption 3(a). In addition, Assumption 3’(b)

is known as the rank ordering property. It was first introduced by Manski (1975) and

subsequently exploited by Goeree et al. (2005) and Goeree et al. (2019) in the QRE liter-

ature. The rank ordering property only imposes one weak restriction on the distribution

function and choice probability. In particular, action k is chosen more frequently than

action k′ if and only if action k has a higher expected utility. This property is satisfied

under the Logit specification and many other distribution functions. One simple case is

that εi(ai) follows an identical non-parametric distribution function and is independent

across actions. Moreover, Assumption 3’ could also be satisfied when the perturbation
21In particular, in case of 2× 2 games, the right hand side of Equation (28) is zero. It suggests that

the matrix in the left hand side must be the one whose every element is zero. In 2×2 games, this matrix
essentially reduces to the expression by Equation (7). Consequently, Equation (7) in Proposition 1 can be
seen as a special case of Equation (28) when there are two players and two actions.

8



is correlated across actions. Consider that ϵi follows a multivariate normal distribution

with the restrictions Var(εi(k)) = σ2 ∀k and Cov(εi(k),εi(k′)) = ρσ2. This error struc-

ture with fixed variance and covariance across actions would imply the rank ordering

property. Further, Goeree et al. (2005) consider another class of distribution functions

that satisfy the exchangeability. Specifically, it requires the distribution function to be

fixed for any perturbation of ϵi. As shown by Goeree et al. (2005), this exchangeability

is a sufficient condition for the rank ordering property. At last, when each player has

two actions, Assumption 3’(b) is equivalent to the zero median restriction and reduces

to Assumption 3(b). Similar as in the main text, the rank ordering property would be

redundant and is testable in experimental settings that specify πi(mi,a) = ui[mi(a)].

The second condition to establish the identification results imposes a weak restric-

tion on the choice probability function. Definition 2 introduces two terminologies that

facilitate the expression of the restriction.

Definition 2. (a) For each player i, a pair of actions k and k′ is directly connected

at mi = m1
i if there exists a realization of m−i, say m1

−i ∈ int[Supp(m−i)], such that

pi(ai = k|m1
i ,m1

−i) = pi(ai = k′|m1
i ,m1

−i).

(b) For each player i, a pair of actions k and k′ is indirectly connected at mi = m1
i

if these two actions are not directly connected. However, there exists a sequence of

actions {k, l, l′, l′′, · · · ,k′} where each pair of adjacent actions in this sequence is directly

connected.

We define two actions to be connected if they are chosen with equal probability under

some realizations of m. With the rank ordering property, two actions are connected

if they have the same expected utility for some m. This condition is straightforward

to generate in a lab experiment. In particular, consider the utility function πi(mi,a) =

ui[mi(a)]. The analyst could carefully choose the monetary payoff so that the domain

of the variable mi(ai = k,a−i) has a non-empty intersection with the domain of mi(ai =

k′,a′−i). Consequently, sufficient variation of m−i would ensure that the expected utilities
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of these two actions equalize at some realization m−i = m1
−i. The identification results

in this paper require each pair of player i’s actions to be either directly connected or

indirectly connected. With this restriction, Proposition 2’ establishes the identification

of the inverted choice probability function F−1
i (·). Note that in a binary choice game,

the condition of connection reduces to the restriction that player i’s choice probability

function pi(mi,m−i) crosses the point 1/2. The latter restriction is imposed in Proposition

2 that focuses on 2×2 games.

Proposition 2’. Under Assumptions 1, 2’, and 3’, and suppose that QRE restrictions

are satisfied whenever mi = m1
i regardless of the realization of m−i. Furthermore, for

any two actions k ̸= k′ of player i, suppose that they are either directly connected or

indirectly connected at mi = m1
i . Then the inverted choice probability function F=1

i (p)

is point identified ∀p ∈ Pi(m1
i ).

Proof. Without loss of generality, suppose that action 0 and action 1 are directly con-

nected at mi = m1
i . First consider the case of a two-player game where player j has

binary choice; for instance, ∏ j ̸=i(K j + 1) = 2. Following the proof of Proposition 2,

it directly identifies π̃i(m1
i ,ai = 1,a−i) ∀a−i. Next, consider a general game (with po-

tentially more than two players) where ∏ j ̸=i(K j + 1) > 2, the condition that actions 0

and 1 are connected implies the following: Generically, there exist infinite realizations

of m−i that equalize these two actions’ expected utilities. To see this point, consider

the condition of equal expected utility that Eπi[m1
i ,ai = 1,p−i(m1

i ,m−i)] = Eπi[m1
i ,ai =

0,p−i(m1
i ,m−i)]. It is an equation but with multiple unknowns (i.e., p−i(m1

i ,m−i)). With

sufficient variation of m−i, there are infinite solutions (i.e., the value of vector p−i(·)) of

this equation. Let us consider H = ∏ j ̸=i(K j +1)−1 such solutions, denoted by m1
−i to
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mH
−i. It then implies the following equation system:

π̃i(m1
i ,ai = 1,a−i = 0)

+ ∑
a−i ̸=0

[π̃i(m1
i ,ai = 1,a−i)− π̃i(m1

i ,ai = 1,a−i = 0)] · p−i(a−i|m1
i ,m

h
−i)

=0, ∀h ≤ H. (35)

Equation (35) can be seen as a linear system that consists of H restrictions and H un-

knowns; for instance, the unknowns are π̃i(·,a−i)− π̃i(·,a−i = 0) ∀a−i ̸= 0. Conse-

quently, each of these terms is identified as a linear transformation of πi(·,ai = 1,a−i =

0). Next, consider any value of m−i such that pi(ai = 1|m1
i ,m−i)> (<)pi(ai = 0|m1

i ,m−i).

The rank ordering property then implies that the difference of expected utility is positive

(negative); for instance, τ[p−i(m1
i ,m−i)] · π̃i(m1

i ,ai = 1,a−i = 0)> (<)0. Note that τ(·)

represents the linear transformation that has been identified by Equation (35). Conse-

quently, this relationship identifies the sign of π̃i(m1
i ,ai = 1,a−i = 0). Further, given the

scale normalization by Assumption 3’(a), the absolute value of this term is normalized

to 1. As a result, the value of π̃i(m1
i ,ai = 1,a−i = 0) is identified. Finally, by Equation

(35), it further identifies π̃i(m1
i ,ai = 1,a−i) ∀a−i.

The condition of Proposition 2’ imposes that every action is either directly or indi-

rectly connected to action 0. Therefore, by a similar argument as above, we can establish

the identification of π̃i(m1
i ,a) for every action profile a. Given these terms, consider the

evaluation of Equation (27) at the realization mi = m1
i , as represented by the following:

π̃i(m1
i )+∆i(m1

i ) ·p−i(m1
i ,m−i) = F−1

i [pi(m1
i ,m−i)].

In the above equation, every term on the left hand side is either identified or observed.

Moreover, the variation of m−i could exogenously vary p−i(·). This variation then iden-

tifies F−1
−i (p) ∀p ∈ Pi(m1

i ). It completes the proof.
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Due to the bijectivity result by Hotz and Miller (1993) and Norets and Takahashi

(2013), the identification of the inverse function F−1
i (·) – as established in Proposition 2’

– directly implies the identification of the distribution function of ϵi. Moreover, similar as

the argument in the main text, when the QRE restriction is imposed on sufficiently many

but a finite number of realizations of mi, function F−1
i [pi(m)] could be point identified

for almost the entire image of player i’s choice probability function pi(m).

The last result of this generalization establishes the identification of the utility func-

tion πi(·), as stated in Proposition 3’.

Proposition 3’. Suppose that the conditions met in Proposition 3 hold so that F−1
i (·) is

identified. Moreover, consider H = ∏ j ̸=i(K j +1) realizations of m−i, denoted by m1
−i to

mH
−i. Suppose that QRE restrictions are satisfied whenever m−i = mh

−i ∀h ≤ H, regard-

less of the realization of mi. These conditions imply that the difference of utility function

π̃i(mi,ai,a−i) = πi(mi,ai,a−i)−πi(mi,ai = 0,a−i) is point identified ∀mi,ai,a−i.

Proof. Consider an arbitrary action ai = k of player i and all the realizations m−i =

mh
−i such that QRE restrictions hold. Evaluating Equation (27) at this action and these

realizations would imply the following relationship:

∑
a−i

π̃i(mi,ai = k,a−i) · p−i(a−i|mi,mh
−i) = F−1

i,k [pi(mi,mh
−i)], ∀h ≤ H. (36)

Equation (36) is a system that consists of H linear restrictions and H unknowns (i.e.,

π̃i(·)). The rank condition is satisfied. Therefore, π̃i(mi,ai,a−i) is point identified

∀mi,ai,a−i. It completes the proof.

Relaxing the Invariance Assumption

This section relaxes the invariance assumption and derives a testable implication of QRE

under a weaker restriction. In particular, we allow the distribution of player i’s mistake

to depend on their own utility, but restrict it to be independent of other players’ utilities.
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For generality, we consider the general multinomial choice game described in the above

section. Naturally, it nests the 2×2 game – as in the main text – as a special case. The

following Assumption 2’’ presents a weaker invariance restriction.

Assumption 2’’. Γi(·) is independent of m−i, but could depend on mi. For instance,

Γi(ϵi|mi,m−i) = Γi(ϵi|mi) ∀1 ≤ i ≤ N.

Under Assumption 2’’, Proposition 4 derives a testable implication of QRE.

Proposition 4. Under Assumptions 1 and 2’’ and consider any H = ∏ j ̸=i(K j +1) real-

izations of m−i — denoted by mh
−i ∀h ≤ H — such that pi(mi,mh

−i) = pi(mi,mh′
−i) ∀h ̸=

h′. Given these realizations, QRE implies the following testable restriction:

Rank[p̃−i(mi,m1:H
−i )]≤ ∏

j ̸=i
(K j +1)−1−min(Ki,∏

j ̸=i
(K j +1)−1). (37)

Note that p̃−i(mi,m1:H
−i ) is a

(
∏ j ̸=i(K j +1)−1

)
×
(

∏ j ̸=i(K j +1)−1
)

matrix.

Proof. Recall Equation (30), it directly implies the following:

∆i(mi) · p̃−i(mi,m1:H
−i ) = F̃−1

i (mi,m1:H
−i ) = 0. (38)

The second equality of Equation (38) is due to the condition of equal choice probabil-

ity that pi(mi,mh
−i) = pi(mi,mh′

−i). Since we focus on the generic case that ∆i(·) has a

full rank, Equation (38) then consists of min(Ki,∏ j ̸=i(K j +1)−1) linearly independent

restrictions on the [∏ j ̸=i(K j+1)−1]× [∏ j ̸=i(K j+1)−1] matrix p̃−i(mi,m1:H
−i ). Conse-

quently, the rank of this matrix is at most ∏ j ̸=i(K j +1)−1−min(Ki,∏ j ̸=i(K j +1)−1).

It completes the proof.

Compared with the results under the invariance assumption, the testable implication

under the relaxed restriction by Assumption 2’’ requires a similar but slightly stronger

condition of equal choice probability. In more detail, Propositions 1 and 1’ restrict player

13



i’s choice probability to be fixed across some games with variations of both mi and m−i.

In contrast, Proposition 4 requires this equal choice property to hold across games with

variation of only m−i, but under a fixed value of own control variable mi. This slightly

stronger condition with fixed mi is generally satisfied in our framework. However, there

exist a few exceptions. An important violation is in the case of 2×2 game where the util-

ity structure satisfies the following two restrictions: (i) mi is a single variable represented

by mi, and (ii) player i’s choice probability function pi(mi,m−i) is strictly monotone in

both mi and m−i. Note that the matching pennies game as shown by Table 1 satisfies

the above two conditions. As shown by Figure 1, the equal choice probability property

with fixed mi can never hold in this game. In contrast, this condition can be always

satisfied in any game as long as pi(·) is not monotone in m−i or the control variables

m−i have sufficient dimensions.22 To see this point, consider again the matching pennies

game but suppose there are two variables m−i = (m−i,0,m−i,1) that could affect player

−i’s utility. Further, assume that m−i,0 strictly raises player −i’s utility of action 0 while

m−i,1 increases the utility of action 1. The structure of matching pennies game then im-

plies pi(mi,m−i,0,m−i,1) is strictly decreasing in m−i,0 and strictly increasing in m−i,1.

Consequently, for any fixed value of mi, the analyst could always find infinite pairs of

(mi,0,m−i,1) that equalize player i’s choice probability. In other words, the condition of

equal choice probability with fixed mi can be always satisfied in this game.

Explanation of the Normalizations

This section describes in details about our normalization in Assumption 3. It explains

why these normalizations are innocuous and their relationship to our identification re-

sults. First consider the transformation such that π̂i(·) = α +βπi(·), ε̂i(·) = βεi(·) where

α ∈R and β ∈R+. Any such affine transformation preserves the same preference and

22There are two sources to increase the dimension of m−i. The first one is provided by each player i to
have more variables in their own mi. The second source is by increasing the number of players.
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predicts identical choice. Therefore, α and β have to be normalized or dealt with. In

the main text, we deal with α by identifying the difference of utility function π̃i(·), as

established in Proposition 3. This difference would cancel out α .

Normalizing β is usually done by setting the scale (or absolute value) of the utility

πi(m1
i ,a) under only one realization m1

i and under only one action profile a to be 1. In

contrast, the utility of any other profile under any other realization of mi is unrestricted.

In Assumption 3(a), we impose an equivalent normalization that sets the scale of the

utility difference |πi(m1
i ,ai = 1,a−i = 0)−πi(m1

i ,ai = 0,a−i = 0)| to be 1. We choose

this normalization as it is simple to derive our identification results.

To better understand the above scale normalization, consider the matching pennies

game in Table 1 and the specification πi(mi,a) = ui[mi(a)]. For an arbitrary value of m1
1,

Assumption 3(a) normalizes |u1(8)−u1(m1
1)| = 1. Together with a location normaliza-

tion that u1(8) = 0 (i.e., the utility of the minimum monetary reward is zero), it further

implies that u1(m1
1) = 1. Therefore, our analysis imposes normalization on two points of

the utility function u1(m) (i.e., m = 8,m1
1) while the value of u1(m) is unrestricted for any

other value of m. These restrictions on two points of the utility function are equivalent

to imposing restrictions on both α and β in the affine transformation ûi(·) = α +βui(·).

Since any such transformation preserves the same preference, our normalization is in-

nocuous.

To see the normalization in Assumption 3(b), consider another transformation such

that ˆ̃πi(·) = π̃i(·) +α and ˆ̃εi = ε̃i −α . This additive transformation is applied to the

utility difference and error difference. It is distinct from the affine transformation – as

described in the above paragraphs – that applies to the utility of each action profile.

As shown by Equation (1), this additive transformation on the difference of utility and

error also preserves the same choice. Consequently, a location normalization is required

and is imposed by Assumption 3(b) that normalizes the median of ε̄i to be zero. Note

that Assumption 3(b) is equivalent to the following condition: Suppose that two actions

15



have the same expected utility, then these two actions must be chosen with the same

probability. This condition is satisfied for Logit and Probit specifications. It is exploited

in almost every empirical application of QRE. Importantly, it is also the key restriction

in the regular QRE (Goeree et al., 2005) and the rank-dependent choice equilibrium

(Goeree et al., 2019).

At last, Assumption 3(b) is only required for the general specification of the utility

function πi(mi,a). When the utility is defined only on the space of received monetary

reward (i.e., ui[mi(a)]), the median of ε̃i can be identified. Therefore, Assumption 3(b)

is redundant and testable under this scenario. To see this point, recall that mi(a) could

be designed to have an independent variation across each action profile. Therefore, there

exists a realization m1
i such that m1

i (ai = 0,a−i = 0) = m1
i (ai = 1,a−i = 1) and m1

i (ai =

1,a−i = 0)=m1
i (ai = 0,a−i = 1). This payoff structure could appear in matching pennies

games and coordination games. Under this realization m1
i , Equation (20) turns to:

F−1
i [pi(m1

i ,m−i)] = ũ1
i · [1−2p−i(m1

i ,m−i)], (39)

where ũ1
i = ui[m1

i (ai = 1,a−i = 0)]−ui[m1
i (ai = 0,a−i = 0)] = ui[m1

i (ai = 0,a−i = 1)]−

ui[m1
i (ai = 1,a−i = 1)]. Under Assumption 3(a) that normalizes |ũ1

i |= 1, Equation (39)

reduces to:

F−1
i [pi(m1

i ,m−i)] = sign(ũ1
i ) · [1−2p−i(m1

i ,m−i)]. (40)

Consequently, variation of m−i could identify the inverse of distribution function F−1
i (·).

This identification is achieved without imposing Median(ε̃i) = 0. Therefore, the median

of the error distribution can be identified.
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