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We consider a transformed random error ˆ̃εi =
1
λ

ε̃i that scales up the standard deviation

of ε̃i by 1
λ

, where 0 < λ < ∞. Under this scaled error, player i’s choice probability is

characterized as:

pi(m) = Fi
{

λ
[
EUi(mi,ai = 0,bi(m))−EUi(mi,ai = 1,bi(m))

]}
, (42)

where bi(m) represents player i’s belief about the probability that player −i will choose

a−i = 0. QRE places the restriction that bi(m) = p−i(m) so that Equation (42) turns to

the quantal response function by Equation (3) when λ = 1. Moreover, Equation (42) also

includes Level-k behaviors when bi(m) is the belief of the level-k player.

Equation (42) indicates that as λ increases, or equivalently as Var(ε̃i) decreases,

player i will choose ai = 0 more (less) frequently if such an action has a higher (lower)

expected utility than ai = 1. Furthermore, when λ → ∞, player i will unambiguously

choose the action that maximizes the expected utility, provided that Fi(−∞) = 0 and

Fi(∞) = 1. Conversely, as λ → 0, player i will choose ai = 0 with probability Fi(0). If

the analyst imposes the restriction that Median(ε̃i) = 0 so that Fi(0) = 1/2, then player i

simply randomizes each action with equal probability.

Next, consider the matching pennies game in Table 1 and suppose that the analyst

imposes the QRE restrictions. Given the normalization that the utility of the lowest
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payoff (i.e., m = 8) is zero, each player’s pi(m) is determined by the following equation

system:

p1(m1,m2) = F1
{

λ
[
(u1(m1)+u1(16)) · p2(m1,m2)−u1(16)

]}
,

p2(m1,m2) = F2
{

λ
[
u2(m2)− (u2(m2)+u2(16)) · p1(m1,m2)

]}
. (43)

Suppose that both ui(m) and Fi(ε̃i) are continuously differentiable, then taking deriva-

tive with respect to (m1,m2) on both sides of Equation (43) would imply the following

comparative statics under the QRE framework:

∂ p1(m)

∂m1
=

λ · f1(λ · ẼU1) ·u′1(m1) · p2(m)

1+λ 2 · f1(λ · ẼU1) · f2(λ · ẼU2) · [u1(m1)+u1(16)] · [u2(m2)+u2(16)]
> 0,

∂ p1(m)

∂m2
=

λ 2 · f1(λ · ẼU1) · f2(λ · ẼU2) · [u1(m1)+u1(16)] ·u′2(m2) · [1− p1(m)]

1+λ 2 · f1(λ · ẼU1) · f2(λ · ẼU2) · [u1(m1)+u1(16)] · [u2(m2)+u2(16)]
> 0,

∂ p2(m)

∂m1
=

−λ 2 · f1(λ · ẼU1) · f2(λ · ẼU2) ·u′1(m1) · [u2(m2)+u2(16)] · p2(m)

1+λ 2 · f1(λ · ẼU1) · f2(λ · ẼU2) · [u1(m1)+u1(16)] · [u2(m2)+u2(16)]
< 0,

∂ p2(m)

∂m2
=

λ · f2(λ · ẼU2) ·u′2(m2) · [1− p1(m)]

1+λ 2 · f1(λ · ẼU1) · f2(λ · ẼU2) · [u1(m1)+u1(16)] · [u2(m2)+u2(16)]
> 0,

(44)

where fi(·) is the P.D.F. of ε̃i and ẼU i is the difference between the expected utilities

of actions 0 and 1. Moreover, both pi(m) and ẼU i are evaluated at the QRE conditions.

The directions of the own-payoff effect and the other-payoff effect, as shown in Equation

(44), are intuitive and are consistent with the reduced form results in Table 6. Moreover,

Equation (44) also provides insights into the comparative statics of these effects with

respect to λ . When λ → 0, both ∂ pi(m)
∂mi

and ∂ pi(m)
∂m−i

converge to zero. These diminishing

own-payoff and other-payoff effects are consistent with the property that each player

randomizes each action with equal probability when λ → 0. Conversely, consider the

other extreme that λ → ∞. Since the expression of ∂ pi(m)
∂mi

has the term λ on its nominator

and the term λ 2 in the denominator, the effect of own payoff mi on pi(m) decreases in the
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order of λ . Conversely, the expression of ∂ pi(m)
∂m−i

has the term λ 2 in its both nominator

and denominator. Therefore, the effect of the other player’s payoff m−i on pi(m) is

order-invariant with respect to λ . As λ → ∞, the own-payoff effect disappears while the

other-payoff effect remains, as predicted in Nash Equilibrium.

Equation (45) offers another perspective for interpreting the comparative statics of

the other-payoff effect. In QRE, player i anticipates that player −i’s payoff m−i has a

diminishing (in order of λ ) on player −i’s choice probability p−i(m). This diminishing

impact is entirely offset by the effect of p−i(m) on pi(m), which grows in the order of λ

as shown in Equation (45). Consequently, the other-payoff effect, quantified by ∂ pi(m)
m−i

,

is order-invariant with respect to λ .

∂ p1(m)

∂ p2(m)
= λ f1(λ ẼU1)[u1(m1)+u1(16)],

∂ p2(m)

∂ p1(m)
=−λ f2(λ ẼU1)[u2(m2)+u2(16)]. (45)

The structure of matching pennies game in Table 1 also implies an interesting feature

under Level-k behaviors. Specifically, when mi < 16 (mi > 16), the level-1 player would

obtain a strictly lower (higher) expected utility of action 0 than action 1. Therefore, as

λ → ∞, the level-1 player will choose ai = 0 with probability 0 (1). Due to the hierarchy

of beliefs, players with higher types would also choose one of the actions with certainty,

and such a choice is independent of players’ risk preference. In summary, under level-k

models, the effect of players’ risk preference parameter ν on their behaviors vanishes in

the limiting case as λ → ∞ or λ → 0.25

Figures 11 to 14 plot pi(mi,m−i) for both players in our Monte Carlo exercise. These

figures aim to illustrate how the value of Var(ε̃i) will affect each player’s behavior under

various models, including QRE and Level-k with k ∈ {1,2,3}. We consider three scenar-

ios: (1) original value of Var(ε̃i) in our Monte Carlo exercise, (2) doubling the value of

25Note that when λ → 0, each player randomizes their actions with equal probability, regardless of
their expected utilities.
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Var(ε̃i), and (3) the limiting case where Var(ε̃i)→ 0. Clearly, these figures demonstrate

the substantial impact of Var(ε̃i) on each player’s behavior.

Figure 11: Players’ Choice Probabilities: QRE Behavior

Figure 12: Players’ Choice Probabilities: Level-1 Reasoning Behavior
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Figure 13: Players’ Choice Probabilities: Level-2 Reasoning Behavior

Figure 14: Players’ Choice Probabilities: Level-3 Reasoning Behavior
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